TEM and FESEM characterization of asbestiform and non-asbestiform actinolite fibers in hydrothermally altered dolerites (France)

  • Didier Lahondère
  • Florence Cagnard
  • Guillaume Wille
  • Jéromine Duron
  • Maxime Misseri
Original Article


This paper provides new mineralogical and morphological characterizations of calcic amphiboles from hydrothermally altered dolerites from France to discuss their potential to contain naturally occurring asbestos (NOA) and to release elongated mineral particles corresponding to asbestos fibers, or asbestos-like fibers, into the air. The calcic amphiboles were characterized using electron microprobe analysis, scanning and transmission electron microscopy. The results underline that fibrous occurrences of actinolite and ferro-actinolite regularly occur in hydrothermally altered dolerites, both in the groundmass and in quartz veins. In the groundmass, actinolitic amphiboles crystallize at the expense of magmatic clinopyroxenes and are rarely fibrous. Conversely, actinolite and ferro-actinolite fibers from quartz veins are potentially asbestiform to clearly asbestiform. The identification of quartz veins in hydrothermally altered dolerites is, therefore, an important parameter which should draw attention to the possible presence of asbestiform actinolite fibers. The mineralogical characterization of such veins as well as the estimation of their thickness and density is an important point to consider during studies involving NOA issues. Moreover, the degree of weathering of the dolerites, which directly affects the ability of non-asbestiform actinolite crystals to dissociate into very thin fibers, regarded as cleavage fragments instead of as asbestos, is also a key parameter to consider. Hydrothermally altered dolerites are common rocks likely to be exploited by the quarrying industry to produce aggregates or to be affected by construction works. Due to the abundance of actinolite fibers that they may contain locally, these rocks become priority targets to be monitored in terms of geological characterization and airborne fiber emission to ensure the protection of populations and workers.


Dolerite Actinolite Naturally occurring asbestos Hydrothermal Vein France 



The authors gratefully acknowledge the Directorate-General for Risk Prevention of the French Ministry of Ecological and Solidarity Transition and the BRGM for the financial support. The authors also thank the two anonymous reviewers for their constructive reviews.


  1. ANSES (2015) Rapport d’expertise collective relatif aux effets sanitaires et à l’identification des fragments de clivage d’amphiboles issus des matériaux de carrière. Maisons-AlfortGoogle Scholar
  2. Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Giéré R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18:551–567CrossRefGoogle Scholar
  3. AS (Australian Standard) (2004) Method for the qualitative identification of asbestos in bulk samples. AS 4964–2004Google Scholar
  4. Barton M, van Bergen MJ (1984) Secondary ilvaite in a dolerite dyke from Rogaland, SW Norway. Mineral Mag 48:449–456CrossRefGoogle Scholar
  5. Bevins RE, Merriman RJ (1988) Compositional controls on coexisting prehnite-actinolite and prehnite-pumpellyite facies assemblages in the Tal y fan métabasite intrusion, North Wales: implications for Caledonian metamorphic field gradients. J Metamorph Geol 6:17–39CrossRefGoogle Scholar
  6. Bouton P, Poncet D, Branger P, Camuzard JP (2008) Notice explicative, Carte géol. France (1/50 000), feuille Mazières-en-Gâtine (588). BRGM, OrléansGoogle Scholar
  7. Bruno C, Tumino R, Fazzo L, Cascone G, Cernigliaro A, De Santis M, Concetta Giurdanella M, Nicita C, Concetta Rollo P, Scondotto S, Spata E, Zona A, Comba P (2014) Incidence of pleural mesothelioma in a community exposed to fibres with fluoro-edenitic composition in Biancavilla (Sicily, Italy). Ann Ist Super Sanità 50:111–118Google Scholar
  8. Casteras M (1971) Notice explicative, Carte géol. In: France (1/50 000), feuille Tardets-Sorholus (1050). BRGM, OrléansGoogle Scholar
  9. Cocherie A, Rossi P, Fanning CM, Guerrot C (2005) Comparative use of TIMS and SHRIMP for U-Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican batholith (France). Lithos 82:185–219CrossRefGoogle Scholar
  10. Cogné J, Jeannette D, Auvray B, Morzadec-Kerfourn MT, Larsonneur C, Bambier A (1980) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Cast (206). BRGM, OrléansGoogle Scholar
  11. Day HW, Springer RK (2005) The first appearance of actinolite in the prehnite-pumpellyite facies, Sierra Nevada, California. Can Mineral 43:89–104CrossRefGoogle Scholar
  12. Demange M, Guérangé-Lozes J, Guérangé B (1995) Notice explicative, Carte géol. France (1/50 000), feuille Lacaune (987). BRGM, OrléansGoogle Scholar
  13. Egal E, Thiéblemont D, Guennoc, Hallégouët B (2005) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Brieuc (243). BRGM, OrléansGoogle Scholar
  14. EPA (Environmental Protection Agency) (1993). Test method: method for determination of asbestos in bulk building materials. EPA/600/R-93/116Google Scholar
  15. EPC (European Parliament and Council) (2009). Directive 2009/148/CE du Parlement européen et du Conseil concernant la protection des travailleurs contre les risques liés à une exposition à l’amiante pendant le travail. Journal officiel de L’Union européenne 330: 28–36Google Scholar
  16. Foster M (1962) Interpretation and a classification of the chlorite. US Geological Survey Professional Paper, pp 1–33Google Scholar
  17. Franzson H, Zierenberg R, Schiffman P (2008) Chemical transport in geothermal systems in Iceland. Evidence from hydrothermal alteration. J Volcanol Geoth Res 173:217–229CrossRefGoogle Scholar
  18. Gianfagna A, Oberti R (2001) Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): Crystal chemistry of a new amphibole end-member. Am Miner 86:1489–1493CrossRefGoogle Scholar
  19. Gianfagna A, Ballirano P, Bellatreccia F, Bruni B, Paoletti L, Oberti R (2003) Characterization of amphibole fibres linked to mesothelioma in the area of Biancavilla, Eastern Sicily, Italy. Mineral Mag 67:1221–1229CrossRefGoogle Scholar
  20. Guérangé-Lozes J, Mouline MP (1998) Notice explicative, Carte géol. France (1/50 000), feuille Carmaux (933). BRGM, OrléansGoogle Scholar
  21. Guérangé-Lozes J, Guérangé B, Mouline MP, Delsahut B (1996) Notice explicative, Carte géol. France (1/50 000), feuille Réalmont (959). BRGM, OrléansGoogle Scholar
  22. Guillot PL, Floc’h JP, Santallier D, Recoing M (1979) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Yrieix la Perche (736). BRGM, OrléansGoogle Scholar
  23. Gunter ME, Darby-Diar M, Lanzirotti A, Tucker JM, Speicher EA (2011) Differences in Fe-redox for asbestiform and nonasbestiform amphiboles from the former vermiculite mine, near Libby, Montana (2011). Am Miner 96: 1414–1417CrossRefGoogle Scholar
  24. Hanson RE, Gose WA, Crowley JL, Ramezani J, Bowring SA, Bullen DS, Hall RP, Pancake JA, Mukwakwami J (2004) Paleoproterozoic intraplate magmatism and basin development on the Kaapvaal Craton: Age, paleomagnetism and geochemistry of ~ 1.93 to ~ 1.87 Ga post-Waterberg dolerites. S Afr J Geol 107:233–254CrossRefGoogle Scholar
  25. Harper M, Lee EG, Doorn SS, Hammond O (2008) Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics. J Occup Environ Hyg 5:761–770CrossRefGoogle Scholar
  26. Harper M, Lee EG, Slaven JE, Bartley DL (2012) An inter-laboratory study to determine the effectiveness of procedures for discriminating amphibole asbestos fibers from amphibole cleavage fragments in fiber counting by phase-contrast microscopy. Ann Occup Hyg 6:645–659Google Scholar
  27. Harris KE, Bunker KL, Strohmeier BR, Hoch R, Lee RJ (2007) Discovering the true morphology of amphibole minerals: complementary TEM and FESEM characterization of particles in mixes mineral dust. In: Mendez-Vilas A and Diaz J (eds) Modern research and educational topics in microscopy. Formatex Microscopy Book ser. no. 3, vol. 2. Formatex Research Center, Badajoz, Spain, pp 643–650Google Scholar
  28. Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Miner 97:2031–2048CrossRefGoogle Scholar
  29. Hebert R (1993) Evolution tectonométamorphique d’un arc insulaire au Protérozoïque supérieur: le domaine de Saint-Brieuc (Massif Armoricain). Documents BRGM, p 228Google Scholar
  30. HSE (Health and Safety Executive) (2006) Asbestos: The analysts’ guide for sampling, analysis and clearance proceduresGoogle Scholar
  31. IARC (International Agency for Research on Cancer) (1987) IARC Monographs on the evaluation of carcinogenic risks of chemicals to humans. Silica some silicates, 42, LyonGoogle Scholar
  32. IARC (International Agency for Research on Cancer) (2012) IARC Monographs on the evaluation of carcinogenic risks to humans. arsenic, Metals, Fibres and Dusts, 100C, LyonGoogle Scholar
  33. IARC (International Agency for Research on Cancer) (2014) Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. The Lancet 15: 1427–1428CrossRefGoogle Scholar
  34. Kazan-Allen L (2005) Asbestos and mesothelioma: Worldwide trends. Lung Cancer 49S1:S3-S8Google Scholar
  35. Lahaye Y, Blais S, Auvray B, Ruffet G (1995) Le volcanisme fissural paléozoïque du domaine nord-armoricain. Bull Soc Géol Fr Paris 166/5:601–612Google Scholar
  36. Lamare P, Destombes JP (1964) Notice explicative, Carte géol. France (1/50 000), feuille Espelette (1026). BRGM, OrléansGoogle Scholar
  37. Langer AM (2008) Identification and enumeration of asbestos fibers in the mining environment: Mission and modification to the Federal Asbestos Standard. Regul Toxicol Pharmacol 52:207–217CrossRefGoogle Scholar
  38. Langer AM, Nolan RP, Addison J (1991) Distinguishing between Amphibole Asbestos Fibers and Elongate Cleavage Fragments of their Non-Asbestos Analogues. In: Brown RC, Hoskins JA, Johnson NF (eds) Mechanisms in fibre carcinogenesis. NATO ASI Series (Series A: Life Sciences), vol 223. Springer, Boston, MAGoogle Scholar
  39. Le Gall J (1999) Les dolérites et basaltes tholéiitiques varisques du domaine nord-est armoricain. Géologie de la France 4:3–25Google Scholar
  40. Lee RJ, Strohmeier BR, Bunker KL, Van Orden DR (2008) Naturally occurring asbestos—A recurring public policy challenge. J Hazard Mater 153:1–21CrossRefGoogle Scholar
  41. Lee RJ, Van Orden DR, Allison KA, Bunker KL, Huntington C (2009) Characterization of airborne amphibole particles in Libby, MT. Indoor Built Environ 18:524–530CrossRefGoogle Scholar
  42. Locock AJ (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11CrossRefGoogle Scholar
  43. Mäkitie H, Data G, Isabyrie E, Mänttäri I, Huhma H, Klausen MB, Pakkanen L, Virransalo P (2014) Petrology, geochronology and emplacement model of the giant 1.37 Ga arcuate Lake Victoria dyke swarm on the margin of a large igneous province in eastern Africa. J Afr Earth Sc 97:273–296CrossRefGoogle Scholar
  44. Meeker GP, Bern AM, Brownfield IK, Lowers HA, Sutley SJ, Hoefen TM, Vance JS (2003) The composition and morphology of amphiboles from the Rainy Creek Complex, near Libby, Montana. Am Miner 88:1955–1969CrossRefGoogle Scholar
  45. Merlet C (1992) Quantitative Electron Probe Microanalysis: a new accurate (Φρz) description. Mikrochimica Acta [Supp] 12:107–115CrossRefGoogle Scholar
  46. Metcalf RV, Buck BJ (2015) Genesis and health risk implications of an unusual occurrence of fibrous NaFe3+ amphibole. Geology 43:63–66CrossRefGoogle Scholar
  47. Montigny R, Azambre B, Rossy M, Thuizat R (1986) K-Ar study of Cretaceous magmatism and metamorphism in the Pyrenees: age and length of rotation of the Iberian Peninsula. Tectonophysics 129:257–273CrossRefGoogle Scholar
  48. NIOSH (National Institute for Occupational Safety and Health) (2011) Asbestos fibers and other elongate mineral particles: state of roadmap for research. Curr Intell Bull 62:154Google Scholar
  49. NIST (National Institute for Standards and Technology) (2006) Bulk asbestos analysis. NIST Handbook, pp 150–153Google Scholar
  50. Offler R (1984) Subcalcic, Fe-rich amphiboles in meta-dolerites, Glenrock Station, NSW, Australia. Mineral Mag 48:47–52CrossRefGoogle Scholar
  51. Oliver GJH, McAlpine RR (1998) Occurrence of a sheeted dolerite dyke complex in the Ballantrae ophiolite. Scotland Geol Mag 135(4):509–517CrossRefGoogle Scholar
  52. Passchier CW, Trouw RAJ (1996) Microtectonics. Springer-Verlag, BerlinGoogle Scholar
  53. Perkins RL, Harvey BW (1993) Method for the determination of asbestos in bulk building materials. U.S. Environmental Protection Agency, EPA/600/R-93/116Google Scholar
  54. Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, Gapais D (2016) U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). Am Miner 101:2430–2442CrossRefGoogle Scholar
  55. Potdevin JL, Goffette O (1991) Les assemblages métamorphiques du filon de diabase de la Grande Commune (massif de Rocroi); des témoins d’une évolution rétrograde varisque en Ardenne. Comptes Rendus de l’Académie des Sciences, Paris, Tome 312, série II: pp 1545–1550Google Scholar
  56. Rigopoulos I, Tsikouras B, Pomonis P, Hatzipanagiotou K (2010) The influence of alteration on the engineering properties of dolerites: the examples from the Pindos and Vourinos ophiolites (northern Greece). Int J Rock Mech Min Sci 47:69–80CrossRefGoogle Scholar
  57. Rose NM, Bird DK (1994) Hydrothermally altered dolerite dykes in East Greenland: implications for Ca-metasomatism of basaltic protoliths. Contrib Miner Petrol 116:420–432CrossRefGoogle Scholar
  58. Ross M, Langer AM, Nord GL, Nolan RP, Lee RJ, Van Orden DR, Addison J (2008) The mineral nature of asbestos. Regul Toxicol Pharmacol 52:26–30CrossRefGoogle Scholar
  59. Rossi P, Cocherie A, Fanning CM, Ternet Y (2003) Datation U-Pb sur zircons des dolérites tholéiitiques pyrénéennes (ophites) à la limite Trias-Jurassique et relations avec les tufs volcaniques dits “infra-liasiques” nord-pyrénéens. C R Geosci 355:1071–1080CrossRefGoogle Scholar
  60. Sengupta P, Ray A, Pramanik S (2014) Mineralogical and chemical characteristics of newer dolerite dyke around Keonjhar, Orissa: Implication for hydrothermal activity in subduction zone setting. J Earth Syst Sci 123/4:887–904CrossRefGoogle Scholar
  61. Shibuya T, Aoki K, Komiya T, Maruyama S (2010) Stratigraphy-related, low-pressure metamorphism in the Hardey syncline, Hamersley Province, Western Australia. Gondwana Res 18:213–221CrossRefGoogle Scholar
  62. Trautmann F, Carn A (1997) Notice explicative, Carte géol. France (1/50 000), feuille La Guerche de Bretagne (354). BRGM, OrléansGoogle Scholar
  63. Ubide T, Wijbrans JR, Galé C, Arranz E, Lago M, Larrea P (2014) Age of the Cretaceous alkaline magmatism in northeast Iberia: Implications for the Alpine cycle in the Pyrenees. Tectonics 33:1444–1460CrossRefGoogle Scholar
  64. Van Gosen BS (2007) The geology of asbestos in the United States and its practical applications. Environmental Eng Geosci 13:55–68CrossRefGoogle Scholar
  65. Van Gosen BS, Lowers HA, Sutley SJ, Gent CA (2004) Using the geologic setting of talc deposits as an indicator of amphibole asbestos content. Environ Geol 45:920–939CrossRefGoogle Scholar
  66. Van Orden DR, Allison KA, Lee RJ (2008) Differentiating amphibole asbestos from non-asbestos in a complex mineral environment. Indoor Built Environ 17:58–68CrossRefGoogle Scholar
  67. Van Orden DR, Lee RJ, Hefferan CM, Schlaegle S, Sanchez M (2016) Determination of the size distribution of amphibole asbestos and amphibole non-asbestos mineral particles. The Microscope 64/1:13–25Google Scholar
  68. Verkouteren JR, Wylie AG (2002) Anomalous optical properties of fibrous tremolite, actinolite, and ferro-actinolite. Am Miner 87:1090–1095CrossRefGoogle Scholar
  69. Vignaroli G, Ballirano P, Belardi G, Rossetti F (2014) Asbestos fibre identification vs. Evaluation of asbestos hazard in ophiolitic rocks mélanges, a case study from the Ligurian Alps (Italy). Environ Earth Sci 72:3679–3698CrossRefGoogle Scholar
  70. WHO (World Health Organization) (1986) Asbestos and other natural mineral fibres, environmental health criteria 53. WHO, GenevaGoogle Scholar
  71. WHO (World Health Organization) (1997) Determination of airborne fibre number concentrations; a recommended method, by phase contrast optical microscopy (membrane filter method). WHO, GenevaGoogle Scholar
  72. Wylie AG, Huggins CW (1980) Characteristics of a potassian winchite-asbestos from the Allamoore talc district, Texas. Can Mineral 18:101–107Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Didier Lahondère
    • 1
  • Florence Cagnard
    • 1
  • Guillaume Wille
    • 1
  • Jéromine Duron
    • 1
  • Maxime Misseri
    • 2
  1. 1.BRGMOrléansFrance
  2. 2.Sorbonne Université, UTC, EA 4297 UTC/ESCOMCompiègne CedexFrance

Personalised recommendations