Present day and future scenarios of coastal erosion and flooding processes along the Italian Adriatic coast: the case of Molise region

  • P. P. C. Aucelli
  • G. Di Paola
  • A. Rizzo
  • C. M. Rosskopf
Original Article


Coastal erosion and flooding are the main hazards affecting coastal areas, especially low-lying ones, which are particularly prone to damage by storm surges. Due to climate change and socio-economic development, the potential impacts of coastal hazards are globally increasing, and erosion and flooding processes will persist in the future especially when considering the future sea level rise projections. In this paper, we have applied an index-based methodology for the evaluation of the present-day susceptibility to erosion and flooding processes along an Italian Adriatic coastal stretch, the Molise coast. The susceptibility indexes that characterize the coastal system in terms of beach and dune system morphologies, shoreline evolution, wave climate effect, river features and coastal topography, have allowed for dividing the study coast into stretches according to their degree of erosion and flooding susceptibility. To identify the hotspot areas, i.e., the areas characterized by the highest potential coastal risk, susceptibility and socio-economic exposure indexes have been combined. The latter have been evaluated for coastal sectors of 1 km according to the CRAF 1 phase of the RISC-KIT index-method, based on indicators referring to land use categories, economic activities and social vulnerability. Taking in consideration the IPCC sea level projections, future hazard scenarios based on estimated global sea level rise by 2065 and 2100 have been evaluated by means of specific erosion and flooding models executed for the hotspot areas. These scenarios have shown that sea level rise will cause strong erosion of beach and dune systems along the study coast, exposing the economic activities and ecological assets to potential serious damage. The study highlights that correct predictions of future coastal hazard scenarios are essential for the assessment of the long term coastal risk and the definition of related prevention and mitigation measures.


Coastal susceptibility assessment Exposure indicators Coastal index Coastal hotspot areas Coastal hazard scenarios Future sea level 



The authors would like to thank the Flood Hazard Research Centre (London, UK) for the support in the CRAF methodology application, and the Italian Ministry of the Environment and Protection of Land and Sea that kindly provided the coastal LIDAR data used in this paper. Furthermore, the authors would like to thank the three reviewers for their helpful and constructive comments that significantly contributed to improving the final version of the paper.

Supplementary material

12665_2018_7535_MOESM1_ESM.jpg (121 kb)
ANNEX 1 – Classification of the parameters used for the evaluation of the Coastal Erosion Susceptibility Index (Rizzo et al. 2017) (JPG 121 KB)
12665_2018_7535_MOESM2_ESM.jpg (117 kb)
ANNEX 2 – Classification of the parameters used for the evaluation of the Coastal Flooding Susceptibility Index (Rizzo et al. 2017) (JPG 116 KB)
12665_2018_7535_MOESM3_ESM.docx (14 kb)
ANNEX 3 – Classification of the indicators used for the evaluation of the Coastal Exposure Index. Land use and business classifications are explained in the text (DOCX 14 KB)


  1. Amato V, Aucelli PPC, Bracone V, Cesarano M, Rosskopf CM (2017) Long-term landscape evolution of the Molise sector of the central-southern Apennines, Italy. Geol Carpathica 68(1):29–42. CrossRefGoogle Scholar
  2. Amorosi A, Bracone V, Di Donato V, Rosskopf CM, Aucelli PPC (2009) The Plio-Pleistocene succession between Trigno and Fortore rivers (Molise and Apulia Apennines): stratigraphy and facies characteristics. GeoActa 8:1–12Google Scholar
  3. Amorosi A, Bracone V, Campo B, D’Amico C, Rossi V, Rosskopf CM (2016) A late Quaternary multiple paleovalley system from the Adriatic coastal plain (Biferno River, Southern Italy). Geomorphology 254:146–159. CrossRefGoogle Scholar
  4. Antonioli F, Anzidei M, Amorosi A, Lo Presti V, Mastronuzzi G, Deiana G, De Falco G, Fontana A, Fontolan G, Lisco S, Marsico A, Moretti M, Orrù PE, Sannino GM, Serpelloni E, Vecchio A (2017) Sea-level rise and potential drowning of the Italian coastal plains: flooding risk scenarios for 2100. Quat Sci Rev 158:29–43CrossRefGoogle Scholar
  5. Armaroli C, Duo E (2017) Validation of the coastal storm risk assessment framework along the Emilia-Romagna coast. Coast Eng. Google Scholar
  6. Aucelli PPC, Faillace PI, Pellegrino P, Rosskopf CM, Scapillati N (2004) L’evoluzione recente della costa molisana (Italia meridionale). Ital J Quat Sci 17:21–31Google Scholar
  7. Aucelli PPC, De Pippo T, Iannantuono E, Rosskopf CM (2007) Caratterizzazione morfologico-dinamica e meteomarina della costa molisana nel settore compreso tra la foce del torrente Sinarca e Campomarino Lido (Italia meridionale). Studi Costieri 13:75–92Google Scholar
  8. Aucelli PPC, Iannantuono E, Rosskopf CM (2009) Recent evolution and erosion risk of the Molise coast (southern Italy)|Evoluzione recente e rischio di erosione della costa molisana (Italia meridionale). Boll della Soc Geol Ital 128:759–771. Google Scholar
  9. Aucelli PPC, Di Paola G, Rizzo A, Rosskopf C (2017a) Rischio all’erosione costiera del settore meridionale della costa molisana. Stud Costieri 26:107–122Google Scholar
  10. Aucelli PPC, Di Paola G, Incontri P, Rizzo A, Vilardo G, Benassai G, Buonocore B, Pappone G (2017b) Coastal inundation risk assessment due to subsidence and sea level rise in a Mediterranean alluvial plain (Volturno coastal plain-southern Italy). Estuar Coast Shelf Sci 198:597–609CrossRefGoogle Scholar
  11. Benassai G, Di Paola G, Aucelli PPC (2015) Coastal risk assessment of a micro-tidal littoral plain in response to sea level rise. Ocean Coast Manag 104:22–35CrossRefGoogle Scholar
  12. Benavente J, Del Río L, Gracia FJ, Martínez-del-Pozo JA (2006) Coastal flooding hazard related to storms and coastal evolution in Valdelagrana spit (Cadiz Bay Natural Park, SW Spain). Cont Shelf Res 26:1061–1076CrossRefGoogle Scholar
  13. Berardo F, Carranza ML, Frate L, Stanisci A, Loy A (2015) Seasonal habitat preference by the flagship species Testudo hermanni: implications for the conservation of coastal dunes. Comptes Rendus Biol 338:343–350CrossRefGoogle Scholar
  14. Bracone V, Amorosi A, Aucelli PPC, Ciampo G, Di Donato V, Rosskopf C (2012a) Palaeoenvironmental evolution of the Plio-Pleistocene Molise Periadriatic Basin (Southern Apennines, Italy): insight from Montesecco Clays. Ital J Geosci 131:272–285. Google Scholar
  15. Bracone V, Amorosi A, Aucelli PPC, Rosskopf CM, Scarciglia F, Di Donato V, Esposito P (2012b) The Pleistocene tectono-sedimentary evolution of the Apenninic foreland basin between Trigno and Fortore rivers (Southern Italy) through a sequence-stratigraphic perspective. Basin Res 24:213–233. CrossRefGoogle Scholar
  16. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602CrossRefGoogle Scholar
  17. Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem R, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  18. Corine Land Cover map (2012) Accessed 1 Feb 2017
  19. D’Amico C, Aiello G, Barra D, Bracone V, Di Bella L, Esu D, Rosskopf CM (2013) Late Quaternary foraminiferal, molluscan and ostracod assemblages from a core succession in the Trigno River mouth area (Central Adriatic Sea, Italy). Bollettino della Società Paleontologica Italiana 52(3):198–205. Google Scholar
  20. Davidson-Arnott RGD (2005) Conceptual model of the effects of sea level rise on sandy coasts. J Coast Res 216:1166–1172CrossRefGoogle Scholar
  21. Di Paola G, Alberico I, Aucelli PPC, Matano F, Rizzo A, Vilardo G (2017a) Coastal subsidence detected by Synthetic Aperture Radar interferometry and its effects coupled with future sea-level rise: the case of the Sele Plain (Southern Italy). J Flood Risk Manag. Google Scholar
  22. Di Paola G, Aucelli PPC, Benassai G, Rodríguez G, Iglesias J, Rosskopf CM (2017b) The assessment of the coastal vulnerability and exposure degree of Gran Canaria Island (Spain) with a focus on the coastal risk of Las Canteras Beach in Las Palmas de Gran Canaria. J Coast Conserv. Google Scholar
  23. EEA (2006) The changing faces of Europe’s coastal areas. EEA Report No. 6/2006. European Environment Agency, Copenhagen, Denmark.
  24. EEA (2013) Balancing the future of Europe’s coasts. EEA Report No. 12/2013. European Environment Agency, Copenhagen, Denmark.
  25. EUROSION (2004) Living with coastal erosion in Europe: sediment and space for sustainability. Reports on-line.
  26. Ferreira Ó, Ciavola P, Armaroli C, Balouin Y, Benavente J, Del Río L, Deserti M, Esteves LS (2009) Coastal storm risk assessment in Europe: examples from 9 study sites. J Coast Res 2009:1632–1636Google Scholar
  27. Ferreira O, Viavattene C, Jiménez J, Bole A, Plomaritis T, Costas S, Smets S (2016) CRAF Phase 1, a framework to identify coastal hotspots to storm impacts. E3S Web Conf 7:9. CrossRefGoogle Scholar
  28. Ferreira O, Viavattene C, Jimenez J, Bolle A, das Neves L, Plomaritis T, McCall R, Van Dongeren A (2017) Storm-induced risk assessment: evaluation of two tools at the regional and hotspot scale. Coast Eng. Google Scholar
  29. Gornitz V (1991) Global coastal hazards from future sea level rise. Palaeogeogr Palaeoclimatol Palaeoecol 89:379–398. CrossRefGoogle Scholar
  30. Gornitz VM, Daniels RC, White TW, Birdwell KR (1994) The development of a coastal risk assessment database: vulnerability to sea-level rise in the U.S. southeast. J Coast Res SI12:327–338. Google Scholar
  31. Gornitz VM, Beaty TW, Daniels RC (1997) A coastal hazards data base for the U.S. West coast. Oak Ridge National Laboratory, Oak RidgeCrossRefGoogle Scholar
  32. Gracia FJ, Hernández L, Hernández AI, Flor G, Gomez M, Sanjaume E (2009) Dunas marítimas y continentales. Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Dirección General de Medio Natural y Política Forestal, Ministerio de Medio Ambiente, y Medio Rural y Marino, MadridGoogle Scholar
  33. Hanson H, Larson M (2008) Implications of extreme waves and water levels in the southern Baltic Sea. J Hydraul Res 46:292–302CrossRefGoogle Scholar
  34. Iannantuono E (2007) Morfodinamica e tendenze evolutive del tratto di costa compreso tra P.ta Penna e P.ta Pietre Nere. Dissertation, University of L’AquilaGoogle Scholar
  35. Iannantuono E, Aucelli PPC, Rosskopf CM (2005) La caratterizzazione ambientale della fascia costiera di Termoli. In: Forleo M (ed) Pesca marittima e acquicoltura: aspetti economici e ambientali. Pesca marittima e acquicoltura: aspetti economici e ambientali. Edizioni Scientifiche Italiane, Napoli, pp 171–194. ISBN:88-495-1146-9Google Scholar
  36. Intergovernmental Panel on Climate Change (2007) Fourth assessment report—climate change 2007. The physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  37. Intergovernmental Panel on Climate Change (2014) Fifth assessment report—climate change 2014. Impacts, adaptation and vulnerability: regional aspects. Cambridge University Press, CambridgeGoogle Scholar
  38. ISPRA (2011) Italian National Institute for Environmental Protection and Research. Accessed 5 June 2017
  39. Kopp R, Kemp A, Bittermann K, Horton B, Donnelly J, Gehrels WR, Hay CC, Mitrovica JX, Morrow ED, Rahmstorf S (2016) Temperature-driven global sea-level variability in the Common Era. Proc Natl Acad Sci USA 113:1434–1441CrossRefGoogle Scholar
  40. Lambeck K, Antonioli F, Anzidei M, Ferranti L, Leoni G, Scicchitano G, Silenzi S (2011) Sea level change along the Italian coast during the Holocene and projections for the future. Quat Int 232:250–257CrossRefGoogle Scholar
  41. McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17–37CrossRefGoogle Scholar
  42. Mclaughlin S, Cooper JAG (2010) A multi-scale coastal vulnerability index: a tool for coastal managers? Environ Hazards 9:233–248CrossRefGoogle Scholar
  43. Nicholls RJ (2010) Impacts of and responses to sea-level rise. In: Church JA, Woodworth PL, Aarup T, Wilson WS (eds) Understanding sea-level rise and variability. Wiley-Blackwell, Oxford. Google Scholar
  44. Nicholls RJ, Wong PP, Burket VR, Codignotto J, Hay JE, McLean RF, Ragoonaden S, Woodroffe CD (2007) Coastal systems and low-lying areas. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 315–356Google Scholar
  45. Perini L, Calabrese L, Salerno G, Ciavola P, Armaroli C (2016) Evaluation of coastal vulnerability to flooding: comparison of two different methodologies adopted by the Emilia-Romagna region (Italy). Nat Hazards Earth Syst Sci 16:181–194CrossRefGoogle Scholar
  46. Petts GE, Armitage PD, Forrow D, Bickerton M, Castella E, Gunn R, Blackburn JH (1991) The effects of abstractions from rivers on benthic invertebrates. CSD report no. 1230. Nature Conservancy Council, PeterboroughGoogle Scholar
  47. Poulter B, Halpin PN (2008) Raster modelling of coastal flooding from sea-level rise. Int J Geogr Inf Sci 22:167–182CrossRefGoogle Scholar
  48. Rahmstorf S (2007) A semi empirical approach to projecting future sea-level rise. Science 315:368–370CrossRefGoogle Scholar
  49. Raji O, Del Rio L, Gracia FJ, Benavente J (2011) The use of LIDAR data for mapping coastal flooding hazard related to storms in Cadiz Bay (SW Spain). J Coast Res 1881–1885Google Scholar
  50. Rangel-Buitrago N, Anfuso G (2015) Risk assessment of storms in coastal zones: case studies from Cartagena (Colombia) and Cadiz (Spain). Springer, Cham. Google Scholar
  51. Rizzo A, Aucelli PPC, Gracia F, Anfuso G (2017) A novelty coastal susceptibility assessment method: application to Valdelagrana area (SW Spain). J Coast Conserv. Google Scholar
  52. Rosskopf CM, Di Paola G, Atkinson DE, Rodríguez G, Walker IJ (2017) Recent shoreline evolution and beach erosion along the central Adriatic coast of Italy: the case of Molise region. J Coast Conserv. Google Scholar
  53. Sallenger AH Jr (2000) Storm impact scale for Barrier Islands. J Coast Res 16:890–895Google Scholar
  54. Scorpio V, Rosskopf CM (2016) Channel adjustments in a Mediterranean river over the last 150 years in the context of anthropic and natural controls. Geomorphology 275:90–104. CrossRefGoogle Scholar
  55. Scorpio V, Aucelli PPC, Giano SI, Pisano L, Robustelli G, Rosskopf CM, Schiattarella M (2015) River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery. Geomorphology 251:77–90. CrossRefGoogle Scholar
  56. Scorpio V, Loy A, Di Febbraro M, Rizzo A, Aucelli PPC (2016) Hydromorphology meets mammal ecology: river morphological quality, recent channel adjustments and otter resilience. River Res Appl 32:267–279. CrossRefGoogle Scholar
  57. Short AD (1996) The role of wave height, period, slope, tide range and embaymentisation in beach classifications: a review. Revista Chilena de Historia Nat 69:589–604Google Scholar
  58. Snoussi M, Ouchani T, Niazi S (2008) Vulnerability assessment of the impact of sea-level rise and flooding on the Moroccan coast: the case of the Mediterranean eastern zone. Estuar Coast Shelf Sci 77:206–213CrossRefGoogle Scholar
  59. Stanisci A, Acosta A, Carranza M (2007) Gli habitat di interesse comunitario sul litorale molisano e il loro valore naturalistico su base floristica. Fitosociologia 44:171–175Google Scholar
  60. Thieler E, Himmelstoss E, Zichichi J, Ayhan E (2009) Digital Shoreline Analysis System (DSAS) version 4.0—an ArcGIS extension for calculating shoreline change. S Geol Surv Open-File Rep 2008-1278Google Scholar
  61. Umgiesser G, Anderson JB, Artale V, Breil M, Gualdi S, Lionello P, Marinova N, Orlic M, Pirazzoli P, Rahmstorf S, Raicich F, Rohling E, Tomasin A, Tsimplis M, Vellinga P, P (2010) From global to regional: local sea level rise scenarios. Focus on the Mediterranean Sea and the Adriatic Sea. Work Rep n1, United Nations Educational, Scientific and Cultural OrganizationGoogle Scholar
  62. Van Dongeren A, Ciavola P, Martinez G, Viavattene C, Bogaard T, Ferreira O, Higgins R, McCall R (2017) Introduction to RISC-KIT: resilience-increasing strategies for coasts. Coast Eng. Google Scholar
  63. Viavattene C, Jimenez J, Owen D, Priest SJ, Parker DJ, Micou P, Ly S (2015) Coastal risk assessment framework: guidance document. Deliv No. D23155. Accessed 19 Jan 2017
  64. Viavattene C, Jimenez J, Ferreira O, Priest S, Owen D, McCall R (2017) Selecting coastal hotspots to storm impacts at the regional scale: a Coastal Risk Assessment Framework. Coast Eng. Google Scholar
  65. Vousdoukas MI, Voukouvalas E, Annunziato A, Giardino A, Feyen L (2016) Projections of extreme storm surge levels along Europe. Clim Dyn 49:3171–3190. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. P. C. Aucelli
    • 1
  • G. Di Paola
    • 2
  • A. Rizzo
    • 1
    • 2
  • C. M. Rosskopf
    • 2
  1. 1.Department of Science and Technology (DiST)Parthenope UniversityNaplesItaly
  2. 2.Department of Biosciences and Territory (DiBT)Molise UniversityPescheItaly

Personalised recommendations