Advertisement

Thermal expansion on volcanic tuff rocks used as building stones: examples from Mexico

  • Rubén López-DoncelEmail author
  • Wanja Wedekind
  • Alfredo Aguillón-Robles
  • Reiner Dohrmann
  • Sergio Molina-Maldonado
  • Theresa Leiser
  • Anna Wittenborn
  • Siegfried Siegesmund
Thematic Issue
Part of the following topical collections:
  1. Stone in the Architectural Heritage: from quarry to monuments—environment, exploitation, properties and durability

Abstract

Three cities in the center of Mexico, declared as cultural heritage, were erected mainly of volcanic tuffs as main construction element. Many of the historic buildings of these cities show significant damage and deterioration. One of the causes of these damages can be attributed to a phenomenon poorly studied in volcanic tuffs, the thermal expansion. To understand the response of volcanic tuffs to thermal expansion, as well as to know their thermal expansion coefficient, thermal expansion test was performed on 12 representative tuffs of these localities. In the same way and to know which of their petrographic, petrophysical, mineralogical, and geochemical properties influence this phenomenon, several laboratory studies were carried out to determine which of these plays an important role in the expansion. The results of our tests showed that volcanic tuffs rocks have very varied thermal expansion values, ranging from 0.7 mm/m at their maximum expansion to even contraction in the order of − 0.5 mm/m. Equally varied were the thermal expansion coefficient values ranging from 10.1 to − 7.2 10−6/K. The most dominant behavior type is the “anisotropic no residual strain behavior”. In general, the behavior of the tuffs in practically all the tests carried out showed a very important heterogeneity in the rocks; however, in spite of the non-homogeneous behavior of the tuffs, three main factors could be identified that play an important role in the thermal expansion of the studied rocks, the chemical composition, e.g., acid volcanic tuff rocks (rhyolitic composition) had greater expansions, while the more basic rocks (basaltic composition) expanded less, the textural and fabrics homogeneity, e.g., the most homogeneous rocks texturally have higher expansion values and the degree of crystallinity, and, e.g., the tuff rocks with the largest amount of glass showed smaller thermal expansions than the tuffs composed of microcrystals.

Keywords

Volcanic tuff rocks Thermal expansion Crystallinity Anisotropy 

Notes

Acknowledgements

The authors thank the financial support of the National Council of Science and Technology, Mexico (CONACyT) through projects CB-130282 and Coop. Bil. 191044 and to the German Science Foundation (DFG Si-438 / 44-1). For the technical, editing and laboratory support, we thank Erasmo Mata, Nohemi Cardona, Eneida Maldonado, Ana Rocio Hernández and Karla Guadalupe González.

References

  1. Fischer RV (1966) Rock composed of volcanic fragments. Earth Sci Rev 1:287–298CrossRefGoogle Scholar
  2. Gómez-Heras M, Smith BJ, Fort R (2008) Influence of surface heterogeneities of building granite on its thermal response and its potential for the generation of thermoclasty. Environ Geol 56:547–560CrossRefGoogle Scholar
  3. Hodgman CD, Weast RC, Shankland RS, Selby SM (eds) (1963) Handbook of chemistry and physics. The Chemical Rubber Publishing Co., ClevelandGoogle Scholar
  4. Hoffmann A (2008) Naturwerksteine Thailands: Lagerstättenerkundung und Bewertung. http://webdoc.sub.gwdg.de/diss/2007/hoffmann/hoffmann.pdf. Accessed 25 March 2018
  5. Kosinski JA, Gualtieri JG, Ballato A (1991) Thermal expansion of alpha quartz. In: Proceedings of the 45th annual symposium on frequency control 1991, p 22.  https://doi.org/10.1109/FREQ.1991.145883. ISBN 0-87942-658-6
  6. López-Doncel R, Wedekind W, Dohrmann R, Siegesmund S (2013) Moisture expansion associated to secondary porosity: an example of the Loseros Tuff of Guanajuato, Mexico. Environ Earth Sci 69(4):1189–1201.  https://doi.org/10.1007/s12665-012-1781-1 CrossRefGoogle Scholar
  7. López-Doncel R, Wedekind W, Leiser T, Molina-Maldonado S, Velasco-Sánchez A, Dohrmann R, Kral A, Wittenborn A, Aguillón-Robles A, Siegesmund S (2016) Salt bursting tests on volcanic tub rocks from Mexico. Environ Earth Sci 75(3):1–22.  https://doi.org/10.1007/s12665-015-4770-3 CrossRefGoogle Scholar
  8. Molina Maldonado S (2016) Estudios geológicos, petrográficos, geoquímicos y geotécnicos en las rocas de construcción del centro histórico de Santiago de Querétaro y su comportamiento al intemperismo. MSc thesis, Autonomous University of San Luis PotosíGoogle Scholar
  9. Morales M (2011) Dimensional stones of Uruguay, Ph.D. thesis. University of Goettingen, GoettingenGoogle Scholar
  10. Morey GW (1938) The properties of glass. Reinhold Publishing Corp., New York, p 264Google Scholar
  11. Mosch S (2009) Optimierung der Exploration, Gewinnung und Materialcharakterisierung von Naturwerksteinen. http://webdoc.sub.gwdg.de/diss/2009/mosch/mosch.pdf. Accessed 25 March 2018
  12. Peschel A (1983) Natursteine. VEB Deutscher Verlag für Grundstoffindustrie, LeipzigGoogle Scholar
  13. Reeder R, Markgraf SA (1986) High temperature crystal chemistry of dolomite. Am Mineral 71:795–804Google Scholar
  14. Ruedrich J, Siegesmund S (2007) Salt-induced weathering: an experimental approach. Environ Geol 52:225–249CrossRefGoogle Scholar
  15. Ruedrich J, Siegesmund S (2006) Fabric dependence of length change behaviour induced by ice crystallization in the pore space of natural building stones. In: Fort R, Alvarez de Buergo M, Gomez-Heras M et al (eds) Heritage, weathering and conservation. Taylor and Francis Group, LondonGoogle Scholar
  16. Sage JD (1988) Thermal microfracturing of marble. In: Marinos PG, Koukis GC (eds) Engineering geology of ancient works, monuments and historical sites. Balkema, RotterdamGoogle Scholar
  17. Schmid R (1981) Descriptive nomenclature and classification of pyroclastic deposits and fragments. Geol Rundsch 70:794–799CrossRefGoogle Scholar
  18. Shushakova V, Fuller ER Jr, Siegesmund S (2010) Influence of shape fabric and crystal texture on marble degradation phenomena: simulations. Environ Earth Sci.  https://doi.org/10.1007/s12665-010-0744-7 Google Scholar
  19. Siegesmund S (1996) The significance of rock fabrics for the geophysical interpretation of geophysical anisotropies. Geotekt Forsch 85:1–123Google Scholar
  20. Siegesmund S, Dürrast H (2014) Physical and mechanical properties of rocks. In: Siegesmund S, Snethlage R (eds) Stone in architecture: properties, durability, 5th edn. Springer, Berlin, pp 97–224CrossRefGoogle Scholar
  21. Siegesmund S, Snethlage R (2014) Stone in architecture: properties, durability, 5th edn. Springer, Berlin, pp 1–550CrossRefGoogle Scholar
  22. Siegesmund S, Vollbrecht A, Ullemeyer K et al (1997) Anwendung der geologischen Gefügekunde zur Charakterisierung natürlicherWerksteine – Fallbeispiel: KauffungerMarmor. Int J Restor Build Monum 3:269–292Google Scholar
  23. Siegesmund S, Ullemeyer K, Weiß T et al (2000a) Physical weathering of marbles caused by anisotropic thermal expansion. Int J Earth Sci 89:170–182CrossRefGoogle Scholar
  24. Siegesmund S, Ruedrich J, Weiss T (2004a) Marble deterioration. In: Prikryl R (ed) Dimension stone 2004. Taylor and Francis Group, LondonGoogle Scholar
  25. Siegesmund S, Weiss T, Ruedrich J (2004b) Schadensmonitoring mittels Ultraschalldiagnostik. Restauro 2:98–105Google Scholar
  26. Siegesmund S, Mosch S, Scheffzük C et al (2008) The bowing potential of granitic rocks: rock fabrics, thermal properties and residual strain. Environ Geol 55:1437–1448CrossRefGoogle Scholar
  27. Siegesmund S, Grimm W-D, Dürrast H et al (2010) Limestones in Germany used as building stones: an overview. In: Smith B, Gomez-Heras M, Viles H et al (eds) Limestone in the built environment: present day challenges to preserve the past. Geological Society Special Publications, LondonGoogle Scholar
  28. Siegesmund S, Sousa L, Knell C (2018) Thermal expansion of granitoids. Environ Earth Sci 77:41.  https://doi.org/10.1007/s12665-017-7119-2 CrossRefGoogle Scholar
  29. Steiger M, Charola AE, Sterflinger K (2014) Weathering and deterioration. In: Siegesmund S, Snethlage R (eds) Stone in architecture: properties, durability, 5th edn. Springer, Berlin, pp 225–316CrossRefGoogle Scholar
  30. Steindlberger E (2003) Vulkanische Gesteine aus Hessen und ihre Eigenschaften als Naturwerksteine. Geol Abhandlungen Hessen 110:1–67Google Scholar
  31. Streckeisen A (1978) IUGS Subcommission on the Systematics of Igneous Rocks. Classification and nomenclature of volcanic rocks, lamprophyres, carbinatites and melilite rocks. Recommendations and suggestions. Neues Jahrbuch für Mineralogie 143:1–14Google Scholar
  32. Strohmeyer D (2003) Gefügeabhängigkeit technischer Eigenschaften, Ph.D. thesis. Univ Göttingen, GöttingenGoogle Scholar
  33. Stück H, Forgó LZ, Rüdrich J, Siegesmund S, Török A (2008) The behavior of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions. Environ Earth Sci 56(3–4):699–713Google Scholar
  34. Stück H, Siegesmund S, Ruedrich J (2011) Weathering behavior and construction suitability of dimension stones from Drei Gleichen area (Thuringia, Germany). Environ Earth Sci 63(7–8):1763–1786CrossRefGoogle Scholar
  35. Wedekind W, Ruedrich J, Siegesmund S (2011) Natural building stones of Mexico-Tenochtitlán: their use, weathering and rock properties at the Templo Mayor, Palace Heras Soto and the Metropolitan Cathedral. Environ Earth Sci 63(7/8):1787–1798CrossRefGoogle Scholar
  36. Wedekind W, López-Doncel R, Dohrmann R, Kocher M, Siegesmund S (2013) Weathering and deterioration of volcanic tuff rocks used as building stone causes by moisture expansion. Environ Earth Sci 69:1203–1224.  https://doi.org/10.1007/s12665-012-2158-1 CrossRefGoogle Scholar
  37. Weiss T, Siegesmund S, Rasolofosaon P (2000) The deterioration velocity–porosity-relation constraint. 9th International congress on deterioration and conservation of stone. Elsevier, Venice, pp 215–223CrossRefGoogle Scholar
  38. Weiss T, Rasolofosaon PNJ, Siegesmund S (2001) Thermal microcracking in Carrara marble. Zdtsch Geol Ges 152(2–4):621–636Google Scholar
  39. Weiss T, Rasolofosaon PNJ, Siegesmund S (2002a) Ultrasonic velocities as a diagnostic tool for the quality assessment of marble. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geological Society Special Publications, LondonGoogle Scholar
  40. Weiss T, Siegesmund S, Fuller E Jr (2002b) Microstructure-based finite element modeling of microcrack formation in marbles. Geol Soc Spec Publ 205:88–101Google Scholar
  41. Weiss T, Siegesmund S, Kirchner D et al (2004a) Insolation weathering and hygric dilatation as a control on building stone degradation. Environ Geol 46(3–4):402–413Google Scholar
  42. Weiss T, Strohmeyer D, Kirchner D, Sippel J, Siegesmund S (2004b) Weathering of stones caused by thermal expansion, hygric properties and freeze–thaw cycles. In: Kwiatkowski D, Löfvendahl R (eds) Proceedings of the 10th international congress on deterioration and conservation of stone. ICOMOS Sweden, Stockholm, pp 83–90Google Scholar
  43. Winkler EM (1994) Stone in architecture, 3rd edn. Springer, BerlinGoogle Scholar
  44. Wittenborn A (2015) Tuffverwitterung am Franziskaner Konvent in Zacatecas, Mexiko: Schadenskartierung und gesteinstechniche Charakterisierung der Verwitterungsphänomene, Bachelor Thesis. Univ Göttingen, GöttingenGoogle Scholar
  45. Zeisig A, Siegesmund S, Weiss T (2002) Thermal expansion and its control on the durability of marbles. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geological Society Special Publication No. 205. The Geological Society, London, pp 65–80Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rubén López-Doncel
    • 1
    Email author
  • Wanja Wedekind
    • 2
  • Alfredo Aguillón-Robles
    • 1
  • Reiner Dohrmann
    • 3
  • Sergio Molina-Maldonado
    • 4
  • Theresa Leiser
    • 2
  • Anna Wittenborn
    • 2
  • Siegfried Siegesmund
    • 2
  1. 1.Instituto de GeologíaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Geowissenschaftliches Zentrum der Universität GöttingenGöttingenGermany
  3. 3.Bundesanstalt für Geowissenschaften und RohstoffeHannoverGermany
  4. 4.Posgrado en Geología AplicadaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico

Personalised recommendations