Estimating of water erosion in semiarid regions using RUSLE equation under GIS environment

Case of Wadi El-Ham watershed in Hodna region, Algeria
  • Omar DjoukbalaEmail author
  • Mohamed Mazour
  • Mahmoud Hasbaia
  • Oussama Benselama
Original Article


Water erosion is one of the main forms of land degradation in Algeria, with a serious repercussion on agricultural productivity. The purpose of this study is to estimate the soil loss of Wadi El-Ham watershed in the center of Algeria, this study aims also to evaluate the effectiveness and reliability of the use of the Revised Universal Soil Loss Equation (RUSLE) under a Geographic Information System in this field. The RUSLE model involves the main factors of erosion phenomena, namely, rain aggressiveness, soil erodibility, topographic factor, land cover index and the anti-erosive practices factor. Using this approach, the specific erosion in Wadi El-Ham watershed is estimated as 5.7 (t/ha/yr) in the entire watershed area. This result is compared to the measured suspended sediment at the Rocade-Sud gauging station situated outlet the watershed. These data consist of 1293 instantaneous measures of the water discharge and the suspended sediment concentration recorded during 21 years. Through this comparison, the used approach of RUSLE under GIS estimates the soil loss in Wadi El-Ham in Hodna region of Algeria with an error of 7.5%. Consequently, the results obtained in cartographic format make it possible to target the areas requiring priority action for a larger scale analysis to find appropriate solutions to combat erosion and to protect the natural environment.


Soil erosion RUSLE GIS Remote sensing Algeria 


  1. Abdo H, Salloum J (2017) Mapping the soil loss in Marqya basin: Syria using RUSLE model in GIS and RS techniques. Environ Earth Sci 76:1–10. CrossRefGoogle Scholar
  2. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. JAWRA J Am Water Resour Assoc 34:73–89CrossRefGoogle Scholar
  3. Beasley DB, Huggins LF, Monke EJ (1980) ANSWERS: a model for watershed planning. Trans ASAE 23:0938–0944. CrossRefGoogle Scholar
  4. Benchettouh A, Kouri L, Jebari S (2017) Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arab J Geosci Google Scholar
  5. Benkadja R, Boussag F, Benkadja A (2014) Identification et évaluation du risque d’érosion sur le bassin versant du K’sob (Est Algérien). Bull Eng Geol Environ 74:91–102. CrossRefGoogle Scholar
  6. Berkane A, Yahiaou A (2007) L’érosion dans les Aurès. Science 18:213–216Google Scholar
  7. Bou Kheir R, Girard MC, Shabane A et al (2001) Apports de la télédétection pour la modélisation de l’érosion hydrique des sols dans la région côtière du Liban. Télédétection (CAN) 2:91–102Google Scholar
  8. Cormary YJM (1964) Study of water and soil conservation: Appl to a Proj type formula soil loss Wischmeier 24Google Scholar
  9. De Roo APJ, Wesseling CG, Ritsema CJ (1996) Lisem: a single-event physically based hydrological and soil erosion model for Drainage Basins. I: theory, input and output. Hydrol Process 10:1107–1117. doi:<1107::AID-HYP415>3.0.CO;2-4CrossRefGoogle Scholar
  10. Demirci A, Karaburun A (2012) Estimation of soil erosion using RUSLE in a GIS framework: a case study in the Buyukcekmece Lake watershed, northwest Turkey. Environ Earth Sci 66:903–913. CrossRefGoogle Scholar
  11. Demmak A (1982) Contribution à l’étude de l’érosion et des transports solides en Algérie septentrionale [Contribution to the study of erosion and sediment transport in northern Algeria]. PhD Thesis. Manuscript. Paris. Université de Pierre et Marie CurieGoogle Scholar
  12. Elaloui A, Marrakchi C, Fekri A et al (2017) USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Model Earth Syst Environ 3:873–885. CrossRefGoogle Scholar
  13. Fao I and II Rome (2012) Harmonized World Soil Database, FAO, Rome,. FAO, Rome, Italy and IIASA, Laxenburg, AustriaGoogle Scholar
  14. Feng X, Wang Y, Chen L et al (2010) Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau. Geomorphology 118:239–248. CrossRefGoogle Scholar
  15. Fernández C, Vega JA (2016) Evaluation of RUSLE and PESERA models for predicting soil erosion losses in the first year after wildfire in NW Spain. Geoderma 273:64–72. CrossRefGoogle Scholar
  16. Hajji O, Abidi S, Hermassi T, Mekni I (2017) Evaluation of water erosion risk in Tunisian semi arid area. In: Water resources in arid areas: the way forward. Springer, Berlin Heidelberg, pp 215–249CrossRefGoogle Scholar
  17. Hasbaia M, Hedjazi A, Benayada L (2012) Variabilite de l’ érosion hydrique dans le bassin du Hodna: cas du sous-bassin versant de l’ oued elham. Rev Marocaine des Sci Agron Vétérinaires 1:28–32Google Scholar
  18. Hermassi T, El Ammami H, Ben Khelifa W (2017) Impact of anthropogenic activities on erosive behavior of nebhana watershed Tunisia. In: Water and land security in drylands. Springer, Cham, pp 185–195CrossRefGoogle Scholar
  19. Jiang L, Yao Z, Liu Z et al (2015) Estimation of soil erosion in some sections of lower Jinsha River based on RUSLE. Nat Hazards 76:1831–1847. CrossRefGoogle Scholar
  20. Karamesouti M, Petropoulos GP, Papanikolaou ID et al (2016) Erosion rate predictions from PESERA and RUSLE at a Mediterranean site before and after a wildfire: comparison and implications. Geoderma 261:44–58. CrossRefGoogle Scholar
  21. Knisel WG (1980) CREAMS: a field scale model for chemicals, runoff, and erosion from agricultural management systems [USA]. United States Dept Agric Conserv Res RepGoogle Scholar
  22. Mancino G, Nolè A, Salvati L, Ferrara A (2016) In-between forest expansion and cropland decline: a revised USLE model for soil erosion risk under land-use change in a Mediterranean region. Ecol Indic 71:544–550. CrossRefGoogle Scholar
  23. Megnounif A, Terfous A, Bouanani A (2003) Production et transport des matières solides en suspension dans le bassin versant de la Haute-Tafna (Nord-Ouest Algérien). Rev des Sci l’eau 16:369. Google Scholar
  24. Mhangara P, Kakembo V, Lim KJ (2012) Soil erosion risk assessment of the Keiskamma catchment, South Africa using GIS and remote sensing. Environ Earth Sci 65:2087–2102. CrossRefGoogle Scholar
  25. Morgan R, Quinton J, Smith R et al (1998) The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments. Earth Surf Process Landforms 23:527–544CrossRefGoogle Scholar
  26. Nearing M, Foster G, Lane L, Finkner S (1989) A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Trans ASAE 32:1587–1593CrossRefGoogle Scholar
  27. Neitsch S, Arnold J, Kiniry J, Williams J (2011) Soil & water assessment tool theoretical documentation version 2009. Texas Water Resour Inst. Google Scholar
  28. Pacheco FAL, Sanches Fernandes LF (2016) Environmental land use conflicts in catchments: a major cause of amplified nitrate in river water. Sci Total Environ 548–549:173–188. CrossRefGoogle Scholar
  29. Pacheco FAL, Varandas SGP, Sanches Fernandes LF, Valle Junior RF (2014) Soil losses in rural watersheds with environmental land use conflicts. Sci Total Environ 485–486:110–120. CrossRefGoogle Scholar
  30. Paroissien JB, Darboux F, Couturier A et al (2015) A method for modeling the effects of climate and land use changes on erosion and sustainability of soil in a Mediterranean watershed (Languedoc, France). J Environ Manage 150:57–68. CrossRefGoogle Scholar
  31. Perovic V, Jaramaz D, Zivotic L et al (2016) Design and implementation of WebGIS technologies in evaluation of erosion intensity in the municipality of NIS (Serbia). Environ Earth Sci 75:1–12. CrossRefGoogle Scholar
  32. Remini B (2000) L’envasement des barrages. Bull Réseau Eros 20:165–171Google Scholar
  33. Renard K, Foster G, Weesies G et al (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agric. Handb. No. 703 404Google Scholar
  34. Rodriguez J, Suárez M (2010) Comparison of mathematical algorithms for determining the slope angle in GIS environment. Aqua-LAC 2:78–82Google Scholar
  35. Rose C, Williams J, Sander G, Barry D (1983) A mathematical model of soil erosion and deposition processes: I. Theory for a plane land element 1. Soil Sci Soc Am J 47:991–995CrossRefGoogle Scholar
  36. Simonneaux V, Cheggour A, Deschamps C et al (2015) Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco). J Arid Environ 122:64–75. CrossRefGoogle Scholar
  37. Souadi Y (2011) L’érosion hydrique au Maghreb, étude d’un cas: le bassin versant de l’oued Barbara (Tunisie septentrionale). Univ du Québec à MontréalGoogle Scholar
  38. Tahiri M, Tabyaoui H, Tahiri A et al (2016) Modelling soil erosion and sedimentation in the Oued Haricha Sub-Basin (Tahaddart Watershed, Western Rif, Morocco): risk assessment. J Geosci Environ Prot 4:107–119. Google Scholar
  39. Tang Q, Xu Y, Bennett SJ, Li Y (2015) Assessment of soil erosion using RUSLE and GIS: a case study of the Yangou watershed in the Loess Plateau, China. Environ Earth Sci 73:1715–1724. CrossRefGoogle Scholar
  40. Toumi S, Meddi M, Mahé G, Brou YT (2013) Cartographie de l’érosion dans le bassin versant de l’Oued Mina en Algérie par télédétection et SIG. Hydrol Sci J 58:1542–1558. CrossRefGoogle Scholar
  41. Valera CA, Valle Junior RF, Varandas SGP et al (2016) The role of environmental land use conflicts in soil fertility: a study on the Uberaba River basin, Brazil. Sci Total Environ 562:463–473. CrossRefGoogle Scholar
  42. Valera CA, Pissarra TCT, Martins Filho MV et al (2017) A legal framework with scientific basis for applying the “polluter pays principle” to soil conservation in rural watersheds in Brazil. Land use policy 66:61–71. CrossRefGoogle Scholar
  43. Valle RF, Varandas SGP, Sanches Fernandes LF, Pacheco FAL (2014) Groundwater quality in rural watersheds with environmental land use conflicts. Sci Total Environ 493:812–827. CrossRefGoogle Scholar
  44. Valle Junior RF, Varandas SGP, Sanches Fernandes LF, Pacheco FAL (2014) Environmental land use conflicts: a threat to soil conservation. Land use policy 41:172–185. CrossRefGoogle Scholar
  45. Williams JR, Nicks AD Arnold JG (1985) Simulator for water resources in rural basins. J Hydraul Eng 111:970–986CrossRefGoogle Scholar
  46. Wischmeier WH (1976) Use and misuse of the universal soil loss equation. J Soil Water Conserv 31:5–9Google Scholar
  47. Wischmeier W, Smith D (1961) A universal equation for predicting rainfallerosion losses—an aid to conservation farming in humid regions. US Dept Agric, Agr Res Serv ARS Spec Rep 22–66Google Scholar
  48. Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses-a guide to conservation planning. Predict rainfall Eros losses-a Guid to Conserv planningGoogle Scholar
  49. Wischmeier WH, Johnson C, Cross B (1971) Soil erodibility nomograph for farmland and construction sitesGoogle Scholar
  50. Wu L, Long TY, Liu X, Mmereki D (2012) Simulation of soil loss processes based on rainfall runoff and the time factor of governance in the Jialing River Watershed, China. Environ Monit Assess 184:3731–3748. CrossRefGoogle Scholar
  51. Young RA, Onstad CA, Bosch DD, Anderson WP (1989) AGNPS: a nonpoint-source pollution model for evaluating agricultural watersheds. J Soil Water Conserv 44:168–173Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.LHYDENV LaboratoryBelhadj Bouchaib University center of Ain TemouchentAin TemouchentAlgeria
  2. 2.VESDD LaboratoryUniversity of M’silaM’silaAlgeria

Personalised recommendations