Advertisement

Assessment of the acid drainage neutralization capacity and the toxic metals lixiviation of tailing from Guanajuato mining district, Mexico

  • María Elena García-ArreolaEmail author
  • Luisa María Flores-Vélez
  • Marcos Loredo-Tovías
  • Alfredo Aguillón-Robles
  • Rubén Alfonso López-Doncel
  • Irene Cano-Rodríguez
  • Sonia Hortensia Soriano-Pérez
Original Article
  • 224 Downloads

Abstract

In Mexico, many environmental problems are generated by large mining activities taking place in several mining districts. These mining activities produce great quantities of residues; large majorities of these have high sulfur content, which could generate acid drainage due to their interaction with the oxygen in the environment. The study area was located in the Mining District of Guanajuato, Mexico with abandoned tailings generated mainly by the gold and silver production. Two areas, called as Monte de San Nicolás (SN) and Peregrina (P) were selected for this study. The results study shows that there was no risk of production of acid drainage, since these tailings contained high amount of carbonates, which neutralized the generation of acidity and consequently decreased the possibility of leaching of some elements. However, not all elements leach in acid pH, as arsenic bound to oxyhydroxides, which is in a basic environment and its increased release by increasing the pH.

Keywords

Mining tailings Acid drainage Neutralization capacity Metals leaching Guanajuato Mexico 

Notes

Acknowledgements

The authors thank the Mexican National Council for Science and Technology (CONACYT 165201) and Secretariat of Public Education (SEP) through the project PROMEP “Movilidad y retención de metales pesados en residuos minerales y humedales”, de la Red de Ciencia y Tecnología Ambiental 2009–2010, 2011–2012, 2013–2014 (Proyecto 1: PROMEP/103.5/09/1282, Proyecto 2: PROMEP/103.5/11/2538, Proyecto 3: PROMEP/103.5/13/5263.). Authors also thank the staff of the Atomic spectrophotometry Laboratory Training Center Materials Engineering and the Geochemistry Laboratory of the Institute of Geology (both UASLP), as well as Ana del Rocio Hernández-García (Institute of Geology, UASLP) for the geologic map design. We thank also the anonymous reviewers for the valuable comments and suggestions.

References

  1. Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In Heavy metals in soils: Springer, Netherlands Environmental Pollution, vol 22, pp 11–50Google Scholar
  2. Almaguer-Rodríguez JL (2010) Estudio geoquímicos de elementos traza en unidades volcánicas del CVSLP: método ICP-MS (validación del método): San Luis Potosí, México. Tesis Licenciatura, Facultad de Ingeniería, Universidad A. de San Luis Potosí, MéxicoGoogle Scholar
  3. Aranda-Gómez JJ, McDowell F (1998) Paleogene extension in the southern Basin and Range province of Mexico: Syndepositional tilting of Eocene red beds and Oligocene volcanic rocks in the Guanajuato mining district. Int Geol Rev 40(2):116–134CrossRefGoogle Scholar
  4. Bain JG, Blowes DW, Robertson WD, Frind EO (2000) Modelling of sulfide oxidation with reactive transport at a mine drainage site. J Contam Hydrol 41(1):23–47CrossRefGoogle Scholar
  5. Bäverman C (1997) The importance of the pH buffering capacity-comparison of various methods to estimate the pH properties of a waste material. In Proceedings of the 5th Annual North American Waste-to-Energy Conference, Research Triangle Park, NC, US, pp 22–25Google Scholar
  6. Brough CP, Warrender R, Bowell RJ, Barnes A, Parbhakar-Fox A (2013) The process mineralogy of mine wastes. Miner Eng 52:125–135CrossRefGoogle Scholar
  7. Catalan LJ, Yin G (2003) Comparison of calcite to quicklime for amending partially oxidized sulfidic mine tailings before flooding. Environ Sci Technol 37(7):1408–1413CrossRefGoogle Scholar
  8. Conesa HM, García G, Faz A, Arnaldos R (2007) Dynamics of metal tolerant plant communities development in mine tailings from the Cartagena-La Unión Mining District (SE Spain) and their interest for further revegetation purposes. Chemosphere 68(6):1180–1185CrossRefGoogle Scholar
  9. Coz-Fernández A (2001) Comportamiento ambiental de lodos de fundición estabilizados/solidificados. Tesis de Doctorado. Departamento de Ingeniería Química y Química Inorgánica, Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicaciones. Universidad de Cantabria, Santander, EspañaGoogle Scholar
  10. De la Peña-Torres A, Cano-Rodríguez I, Aguilera-Alvarado AF, Gamiño-Arroyo Z, Gómez-Castro FI, Gutiérrez-Valtierra MP, Soriano-Pérez SH (2012) Adsorción y desorción de arsénico en oxihidróxidos de fierro sintéticos como modelo de estudio para explicar uno de los mecanismos de su lixiviación de jales mineros. Revista Mexicana de Ingeniería Química 11(3):495–503Google Scholar
  11. Echegoyén-Sánchez J, Romero-Martínez S, Velázquez-Silva S (1970) Geología y yacimientos minerales de la parte central del distrito minero de Guanajuato. Consejo de Recursos Naturales No Renovables. Boletín 75:36Google Scholar
  12. Edwards JD (1955) Studies of some early Tertiary red conglomerates of central Mexico. US Geol Surv Prof Paper 264-H:153–185Google Scholar
  13. Fellet G, Marmiroli M, Marchiol L (2014) Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci Total Environ 468:598–608CrossRefGoogle Scholar
  14. García-Arreola ME (2014) Lixiviación a largo plazo de los principales elementos tóxicos en jales y estudio de una alternativa de reutilización de los residuos mineros. Tesis Doctoral, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, MéxicoGoogle Scholar
  15. Hernández-Acosta E, Mondragón-Romero E, Cristobal-Acevedo D, Rubiños-Panta JE, Robledo-Santoyo E (2009) Vegetación, residuos de mina y elementos potencialmente tóxicos de un jal de Pachuca, Hidalgo, México. Serie ciencias forestales y del ambiente 15(2):109–114Google Scholar
  16. Hsu PH (1977) Aluminium hydroxides and oxyhydroxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments, vol 4. Soil Sci. Soc. Am. Publication, Madison, pp 99–143Google Scholar
  17. Jing C, Korfiatis GP, Meng X (2003) Immobilization mechanisms of arsenate in iron hydroxide sludge stabilized with cement. Environ Sci Technol 37(21):5050–5056CrossRefGoogle Scholar
  18. Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1):3–14CrossRefGoogle Scholar
  19. Kastyuchik A, Karam A, Aïder M (2016) Effectiveness of alkaline amendments in acid mine drainage remediation. Environ Technol Innov 6:49–59CrossRefGoogle Scholar
  20. Labarhte-Hernández G, Aguillón-Robles A, Tristán-González M, Mata-Segura JL, Barboza-Gudiño JR, Torres-Hernández JR, Álvarez-Maya VM (1996) Cartografía geológica 1:10,000 del Distrito Minero de Guanajuato, Sierra del Chorro y Lote Villalpando. Instituto de Geología, Universidad Autónoma de San Luis Potosí, MéxicoGoogle Scholar
  21. Labarthe-Hernández G, Jiménez-López LS, Tristán-González M, Mata-Segura JL, Aguillón-Robles A, Almaguer-Tapia R, Barboza-Gudiño JR (1995) Cartografía Geológica 1:25:000 de la Sierra de Guanajuato. Instituto de Geología, Universidad Autónoma de San Luis Potosí, MéxicoGoogle Scholar
  22. Liu Y, Huang L (2016) Magnetite recovery from copper tailings increases arsenic distribution in solution phase and uptake in native grass. J Environ Manage 186:175–182CrossRefGoogle Scholar
  23. López-Doncel R, Wedekind W, Dohrmann R, Siegesmund S (2012) Moisture expansion associated to secondary porosity: an example of the Loseros Tuff of Guanajuato, Mexico. Environ Earth Sci 69(4):1189–1201CrossRefGoogle Scholar
  24. Lozano R, Bernal JP (2005) Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis. Revista Mexicana de Ciencias Geológicas 22(3):329–344Google Scholar
  25. Martínez-Reyes J (1992) Mapa geológico de la Sierra de Guanajuato: con resumen de la geología de la Sierra de Guanajuato. Universidad Nacional Autónoma de México. Instituto de Geología. Cartas Geológicas y Mineras 8:1Google Scholar
  26. Mathieu C, Pieltain F (1998) Analyse physique des sols: Méthodes choises. TEC & DOC Lavoisier. Paris, Francia, p 275Google Scholar
  27. McDonald DM, Webb JA, Taylor J (2006) Chemical stability of acid rock drainage treatment sludge and implications for sludge management. Environ Sci Technol 40(6):1984–1990CrossRefGoogle Scholar
  28. McKenzie RM (1977) Manganese oxides and hydroxides. Minerals in soil environments. In: Dixon JB, Weed SB (eds). Soil Science Society of America. Publ. Madison, USA, pp 181–193Google Scholar
  29. Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116(3):278–283CrossRefGoogle Scholar
  30. Moncur MC, Ptacek CJ, Blowes DW, Jambor JL (2005) Release, transport and attenuation of metals from an old tailings impoundment. Appl Geochem 20(3):639–659CrossRefGoogle Scholar
  31. Neculita CM, Zagury GJ, Bussiere B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. J Environ Qual 36(1):1–16CrossRefGoogle Scholar
  32. Nieto-Samaniego AF, Báez-López JA, Levresse G, Alaniz-Alvarez SA, Ortega-Obregón C, López-Martínez M, Noguez-Alcántara B, Solé-Viñaz J (2016) New stratigraphic, geochronological, and structural data from the southern Guanajuato Mining District, México: implications for the caldera hypothesis. Int Geol Rev 58(2):246–262CrossRefGoogle Scholar
  33. O’Day PA (2006) Chemistry and mineralogy of arsenic. Elements 2:77–83CrossRefGoogle Scholar
  34. Ortiz-Hernández LE, Acevedo-Sandoval OA, Flores-Castro K (2003) Early Cretaceous intraplate seamounts from Guanajuato, central México: Geochemical and mineralogical data. Revista Mexicana de Ciencias Geológicas 20(1):27–40Google Scholar
  35. Parbhakar-Fox AK, Edraki M, Walters S, Bradshaw D (2011) Development of a textural index for the prediction of acid rock drainage. Miner Eng 24(12):1277–1287CrossRefGoogle Scholar
  36. Plante B, Bussiére B, Benzaazoua M (2012) Static tests response on 5 Canadian hard rock mine tailings with low net acid-generating potentials. J Geochem Explor 114:57–69CrossRefGoogle Scholar
  37. Ramos-Arroyo YR, Siebe-Garabach CD (2006) Estrategia para identificar jales con potencial de riesgo ambiental en un distrito minero: estudio de caso en el Distrito de Guanajuato, México. Revista Mexicana de Ciencias Geológicas 23(1):54–74Google Scholar
  38. Ramos-Arroyo YR, Prol-Ledesma RM, Siebe-Garabach C (2004) Características geológicas y mineralógicas e historia de extracción del Distrito de Guanajuato, México: Posibles escenarios geoquímicos para los residuos mineros. Revista Mexicana de Ciencias Geológicas 21(2):268–284Google Scholar
  39. Randall RJA, Saldaña AE, Clark KF (1994) Exploration in a volcano-plutonic center at Guanajuato, Mexico. Econ Geol 89(8):1722–1751CrossRefGoogle Scholar
  40. Renault S, Sailerova E, Fedikow MAF (2002) Phytoremediation of mine tailings and bio-ore production: progress report on seed germination, survival and metal uptake of seedlings planted at Central. In: Manitoba (Au) minesite (NTS 52L13); in Report of Activities, Manitoba Industry, Trade and Mines. Manitoba Geological Survey, Australia, pp 255–265Google Scholar
  41. Renault S, Szczerski C, Nakata C, Sailerova E, Fedikow MAF (2003) Phytoremediation of mine tailings and bio-ore production: progress report on seed germination, plant growth and metal accumulation in seedlings planted at Central Manitoba (Au) mine site (NTS 52L/13). In: Report of Activities 2003, Manitoba Industry, Economic Development and Mines. Manitoba Geological Survey, Australia, pp 200–208Google Scholar
  42. Renault S, Szczerski C, Sailerova E, Fedikow MAF (2004) Phytoremediation and revegetation of mine tailings and bio-ore production: progress report on plant growth in amended tailings and metal accumulation in seedlings planted at Central Manitoba (Au) minesite (NTS 52L13). In: Report of Activities 2004, Manitoba Industry, Economic Development and Mines. Manitoba Geological Survey, Australia, pp 257–261Google Scholar
  43. Rios CA, Williams CD, Roberts CL (2008) Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites. J Hazard Mater 156(1):23–35CrossRefGoogle Scholar
  44. Roe PA, Tinney A (2002) Overview of Best Practice Environmental Management in Mining, Best Practice Environmental Management in Mining Series. Canberra. Commonwealth of Australia. ISBN 064287979 of the series 0642194181Google Scholar
  45. Romero FM, Armienta MA, Carrillo-Chavez A (2004) Arsenic sorption by carbonate-rich aquifer material, a control on arsenic mobility at Zimapán, México, Archives of Environmental. Contam Toxicol 47:1–13Google Scholar
  46. Roussel C, Néel C, Bril H (2000) Minerals controlling arsenic and lead solubility in an abandoned gold mine tailing. Sci Total Environ 263(1):209–219CrossRefGoogle Scholar
  47. Sánchez-Andrea I, Sanz JL, Bijmans MF, Stams AJ (2014) Sulfate reduction at low pH to remediate acid mine drainage. J Hazard Mater 269:98–109CrossRefGoogle Scholar
  48. Schwertmann U, Taylor RM (1989) Iron oxides. In: Weed SB (ed) Minerals in soil environments (JB Dixon. Soil Science Society American Publication, Madison, pp 145–180Google Scholar
  49. SEMARNAT (2000) Norma Oficial Mexicana NOM-021-RECNAT-2000, Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación. 31 de Diciembre 2002. MéxicoGoogle Scholar
  50. Soriano-Pérez SH (2002) Ensayos de lixiviación para residuos industriales con elementos metálicos. Tesis Doctoral, Departamento de Ingeniería Química y Química Inorgánica, Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicaciones, Universidad de Cantabria, Santander, EspañaGoogle Scholar
  51. USEPA (2000) EPA 821-R-00-007. Coal remaining—best management practices guidance manual, office of water, office of science and technology engineering and analysis division, Environmental Protection Agency, Washington DC. https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=20002LXH.PDF
  52. Van der Sloot HA, Rietra RPJJ., Vroon RC, Scharff H, Woelders JA (2001) Similarities in the long term leaching behavior of predominantly inorganic waste, mswi bottom ash, degraded MSW and bioreactor residues. In: Christensen TH, Cossu R, Stegmann R (eds) Proceedings of the 8th Waste management and Landfill Symposium, vol 1. Energy Research Centre of the Netherlands ECN, ECN-RX-01-044, Netherland, pp 199–208Google Scholar
  53. Vite TJ, Soto JLT, Vite TM, Aguilar OR, Susarrey HO (2007) Propiedades tribológicas de nuevos materiales cerámicos obtenidos de residuos industriales mineros. Memorias 8° Congreso Iberoamericano de Ingeniería Mecánica, Cusco, PerúGoogle Scholar
  54. Wastewater Technology Centre (1990) Compendium of waste leaching tests. Report EPS 3/HA/7. Environment CanadaGoogle Scholar
  55. Yan J, Moreno L, Neretnieks I (2000) The long-term acid neutralizing capacity of steel slag. Waste Manag 20(2):217–223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • María Elena García-Arreola
    • 1
    • 3
    Email author
  • Luisa María Flores-Vélez
    • 2
  • Marcos Loredo-Tovías
    • 1
  • Alfredo Aguillón-Robles
    • 3
  • Rubén Alfonso López-Doncel
    • 3
  • Irene Cano-Rodríguez
    • 4
  • Sonia Hortensia Soriano-Pérez
    • 2
  1. 1.Área de Ciencias de la Tierra, Facultad de IngenieríaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  3. 3.Instituto de GeologíaUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
  4. 4.Departamento de Ingeniería Química, División de Ciencias Naturales y ExactasUniversidad de GuanajuatoGuanajuatoMexico

Personalised recommendations