Advertisement

The Starzach site in Southern Germany: a site with naturally occurring CO2 emissions recovering from century-long gas mining as a natural analog for a leaking CCS reservoir

  • Alexander Lübben
  • Carsten LevenEmail author
Original Article

Abstract

In this paper, we present the Starzach site, a region featuring numerous natural CO2 emission spots, such as mofettes, that reappeared after a longer period of extensive industrial CO2 mining. We discuss the results of a detailed literature study on the geological setting and the activities related to the gas mining in combination with own measurements to introduce the site as an example on how gas leakage from an insecure CCS reservoir could manifest at the surface. The site is in particular interesting for such investigations as the CO2 emissions started to replenish after the end of the CO2 mining and offers the unique possibility to investigate an increase in degassing activity as it might be expected for an active CCS site where leakage is suspected. Based on the geological setting and soil, gas emission, and isotope investigations, we further discuss the source of the CO2 emission and the gas ascent to the ground surface via deep-reaching faults, latter being so far excluded by previous work. The combination of our extensive literature review and recent field investigations allowed us to draw new geological conclusions for the site that were under discussion for a long time and to give insight into the site’s potential for CCS-related analog studies in the future.

Keywords

Natural analog Carbon capture and storage Fluid migration CO2 degassing Helium and carbon isotope ratios Soil gas 

Notes

Acknowledgements

The presented work has been funded by the German Federal Ministry of Education and Research (BMBF) in the frame of the GEOTECHNOLOGIEN program. The financial support of the MONACO project (under the Grant ID 03G0785K) is gratefully acknowledged. We thank the municipality Starzach, in particular Marion and Armin Vees, and Max-Richard Freiherr von Rassler for support and unlimited access to the field site. We also thank Prof. Werner Ernst for supporting information, and helpful comments and discussions and Dr. Karin Bräuer from the Helmholtz Centre for Environmental Research-UFZ for the isotope analysis and the fruitful discussions. The critical and helpful comments of three anonymous reviewers are greatly appreciated.

References

  1. Aiuppa A, Bertagnini A, Métrich N, Moretti R, Di Muro A, Liuzzo M, Tamburello G (2010) A model of degassing for Stromboli volcano. Earth Planet Sci Lett 295:195–204.  https://doi.org/10.1016/j.epsl.2010.03.040 CrossRefGoogle Scholar
  2. Althaus E (1982) Geochemical problems in fluid-rock interaction. In: Haenel R (ed) The Urach Geothermal Project. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, pp 123–134Google Scholar
  3. Bachmann GH, Müller M (1992) Sedimentary and structural evolution of the German Molasse Basin. Eclogae Geol Helv 85:519–530Google Scholar
  4. Bachmann GH, Müller M, Weggen K (1987) Evolution of the Molasse Basin (Germany, Switzerland). Tectonophysics 137:77–92.  https://doi.org/10.1016/0040-1951(87)90315-5 CrossRefGoogle Scholar
  5. Ballentine CJ, Burnard PG (2002) Production, release and transport of noble gases in the continental crust. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Washington, pp 481–538.  https://doi.org/10.2138/rmg.2002.47.12 Google Scholar
  6. Bartz J (1961) Die Entwicklung des Flußnetzes in Südwestdeutschland. Jahreshefte des geologischen Landesamtes Baden-Württemberg 4:127–135Google Scholar
  7. Becken M, Ritter O, Park SK, Bedrosian PA, Weckmann U, Weber M (2008) A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California. Geophys J Int 173:718–732.  https://doi.org/10.1111/j.1365-246X.2008.03754.x CrossRefGoogle Scholar
  8. Bense FA, Jaehne-Klingberg F (2017) Storage potentials in the deeper subsurface of the Central German North Sea. In: Dixon T, Laloui L, Twinning S (eds) 13th International conference on greenhouse gas control technologies, Ghgt-13, vol 114. Energy Procedia, pp 4595–4622.  https://doi.org/10.1016/j.egypro.2017.03.1580
  9. Bibus E, Wesler J (1995) The middle Neckar as an example of fluvio-morphological processes during the Middle and Late Quaternary period. Zeitschrift für Geomorphologie 100:15–26Google Scholar
  10. Blank JG, Brooker RA (1994) Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon-isotope behavior. Volatiles Magmas 30:157–186Google Scholar
  11. Blaser PC (1987) Vorkommen von Methan und Helium in CO2-Gasen des Kohlensäuregebietes Eyach-Imnau (MTBL 7518 und 7519)-Ein Beitrag zur gasgeochemischen Feld- und Labormethodik. Diploma Thesis, Eberhard Karls Universität TübingenGoogle Scholar
  12. Blume HP, Felix-Henningsen P (2009) Reductosols: natural soils and technosols under reducing conditions without an aquic moisture regime. J Plant Nutr Soil Sci Z Pflanzenernahr Bodenkd 172:808–820.  https://doi.org/10.1002/jpln.200800125 CrossRefGoogle Scholar
  13. Bond CE et al (2017) The physical characteristics of a CO2 seeping fault: the implications of fracture permeability for carbon capture and storage integrity. Int J Greenh Gas Control 61:49–60.  https://doi.org/10.1016/j.ijggc.2017.01.015 CrossRefGoogle Scholar
  14. Bräuer K, Kämpf H, Koch U, Strauch G (2011) Monthly monitoring of gas and isotope compositions in the free gas phase at degassing locations close to the Novy Kostel focal zone in the western Eger Rift, Czech Republic. Chem Geol 290:163–176.  https://doi.org/10.1016/j.chemgeo.2011.09.012 CrossRefGoogle Scholar
  15. Bräuer K, Kämpf H, Niedermann S, Strauch G (2013) Indications for the existence of different magmatic reservoirs beneath the Eifel area (Germany): A multi-isotope (C, N, He, Ne, Ar) approach. Chem Geol 356:193–208.  https://doi.org/10.1016/j.chemgeo.2013.08.013 CrossRefGoogle Scholar
  16. Bräuer K, Kämpf H, Strauch G (2014) Seismically triggered anomalies in the isotope signatures of mantle-derived gases detected at degassing sites along two neighboring faults in NW Bohemia, central Europe J Geophys Res-Solid. Earth 119:5613–5632.  https://doi.org/10.1002/2014jb011044 Google Scholar
  17. Brockamp O, Schlegel A, Clauer N (2011) Mesozoic hydrothermal impact on Rotliegende and Bunter immature sandstones of the High Rhine trough and its adjacent eastern area (southern Black Forest, Germany). Sediment Geol 234:76–88.  https://doi.org/10.1016/j.sedgeo.2010.12.001 CrossRefGoogle Scholar
  18. Brunner H, Hinkelbein K, Simon T (1988) Geologie und Tektonik im Gebiet von Ellenweiler (Gmde. Oppenweiler, Rems-Murr-Kreis). Jahreshefte des geologischen Landesamtes Baden-Württemberg 30:167–200Google Scholar
  19. Bundschuh J (1986a) Teil A: Kartierung im südwestdeutschen Keuperbergland bei Heiligenzimmern unter besonderer Berücksichtigung der Chronostratigraphie im mittleren Mittelkeuper. Diploma Thesis, Eberhard Karls Universität TübingenGoogle Scholar
  20. Bundschuh J (1986b) Teil B: Hydrogeologische und hydrochemische Untersuchungen zur Subrosion des Steinsalzlagers im Mittleren Muschelkalk von Südwestwürttemberg zwischen Neckar, Eyach und Stunzach. Diploma Thesis, Eberhard Karls Universität TübingenGoogle Scholar
  21. Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028CrossRefGoogle Scholar
  22. Calais E, Nocquet JM, Jouanne F, Tardy M (2002) Current strain regime in the Western Alps from continuous Global Positioning System measurements, 1996-2001. Geology 30:651–654CrossRefGoogle Scholar
  23. Camarda M, De Gregorio S, Favara R, Gurrieri S (2007) Evaluation of carbon isotope fractionation of soil CO2 under an advective-diffusive regimen: a tool for computing the isotopic composition of unfractionated deep source. Geochim Cosmochim Acta 71:3016–3027.  https://doi.org/10.1016/j.gca.2007.04.002 CrossRefGoogle Scholar
  24. Carlé W (1953) Zwei fast vergessene Mineralwässer im ehemaligen hohenzollerischen Gebiet und ihre Stellung im Rahmen der Mineralwässer der Oberen Neckarlandes. Hohenzollerisches Jahresheft 13:60–83Google Scholar
  25. Carlé W (1954) Der Säuerling von Kleinengstingen-die einzige Mineralquelle der Albhochfläche. Zeitschrift der Deutschen Geologischen Gesellschaft 105:252–267Google Scholar
  26. Carlé W (1955) Bau und Entwicklung der Südwestdeutsche Großscholle vol 16. Geologisches Jahrbuch, Beihefte. Geologische Landesanstalt der Bundesrepublik Deutschland-Amt für Bodenforschung, HannoveGoogle Scholar
  27. Carlé W (1958) Kohlensäure, Erdwärme und Herdlage im Uracher Vulkangebiet und seiner weiteren Umgebung. Zeitschrift der Deutschen Geologischen Gesellschaft 110:71–101Google Scholar
  28. Carlé W (1975) Die Mineral- und Thermalwässer von Mitteleuropa-Geologie, Chemismmus, Genese. Bücher der Zeitschrift Naturwissenschaftliche Rundschau, First edn. Wissenschaftliche Verlagsgesellschaft mbH, StuttgartGoogle Scholar
  29. Ciotoli G, Etiope G, Guerra M, Lombardi S (1999) The detection of concealed faults in the Ofanto Basin using the correlation between soil-gas fracture surveys. Tectonophysics 301:321–332.  https://doi.org/10.1016/s0040-1951(98)00220-0 CrossRefGoogle Scholar
  30. Cloetingh S et al (2005) Lithospheric memory, state of stress and rheology: neotectonic controls on Europe’s intraplate continental topography. Quat Sci Rev 24:241–304.  https://doi.org/10.1016/j.quascirev.2004.06.015 CrossRefGoogle Scholar
  31. Dezes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33.  https://doi.org/10.1016/j.tecto.2004.06.011 CrossRefGoogle Scholar
  32. Dietrich H-G (1982) Hydrogeological results from the Urach 3 research borehole. In: Haenel R (ed) The Urach Geothermal Project. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, pp 59–80Google Scholar
  33. Dreibrodt S, Lubos C, Terhorst B, Damm B, Bork HR (2010) Historical soil erosion by water in Germany: scales and archives, chronology, research perspectives. Quat Int 222:80–95.  https://doi.org/10.1016/j.quaint.2009.06.014 CrossRefGoogle Scholar
  34. Elio J, Ortega MF, Nisi B, Mazadiego LF, Vaselli O, Caballero J, Grandia F (2015) CO2 and Rn degassing from the natural analog of Campo de Calatrava (Spain): implications for monitoring of CO2 storage sites. Int J Greenh Gas Control 32:1–14.  https://doi.org/10.1016/j.ijggc.2014.10.014 CrossRefGoogle Scholar
  35. Ernst W (1968) Verteilung und Herkunft von Bodengasen in einigen süddeutschen Störungszonen Erdöl und Kohle, Erdgas, Petrochemie 21: Teil 1: 605–610. Teil 602:692–697Google Scholar
  36. Etiope G, Lombardi S (1995) Evidence for radon transport by carrier gas through faulted clays in Italy. J Radioanal Nucl Chem Artic 193:291–300.  https://doi.org/10.1007/bf02039886 CrossRefGoogle Scholar
  37. Etiope G, Guerra M, Raschi A (2005) Carbon dioxide and radon geohazards over a gas-bearing fault in the Siena Graben (Central Italy) Terr Atmos. Ocean Sci 16:885–896Google Scholar
  38. EU (2009) Directive 2009/31/EC of the European Parliament and of the Council on the geological storage of carbon dioxide Official Journal of the European UnionGoogle Scholar
  39. Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. J Struct Geol 19:1393–1404.  https://doi.org/10.1016/s0191-8141(97)00057-6 CrossRefGoogle Scholar
  40. Federico C, Corso PP, Fiordilino E, Cardellini C, Chiodini G, Parello F, Pisciotta A (2010) CO2 degassing at La Solfatara volcano (Phlegrean Fields): processes affecting delta C-13 and delta O-18 of soil CO2. Geochim Cosmochim Acta 74:3521–3538.  https://doi.org/10.1016/j.gca.2010.03.010 CrossRefGoogle Scholar
  41. Flechsig C, Bussert R, Rechner J, Schütze C, Kämpf H (2008) The Hartousov Mofette Field in the Cheb Basin, Western Eger Rift (Czech Republic): a comperative geoelectric, sedimentologic and soil gas study of a magmatic diffuse co2-degassing structure. Z Geol Wiss 36:177–193Google Scholar
  42. Foltas F (1981) Geologische Kartierung im Raum Starzach (Baden-Württemberg) unter besonderer Berücksichtigung der CO2-Lagerstätte Eyach-Bad Niedernau. Diploma Thesis, Eberhard Karls Universität TübingenGoogle Scholar
  43. Frank M (1951) Der Wasserschatz im Gesteinskörper Württembergs. Schweizerbart´sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  44. Frantz S (1990) Hydrochemische Untersuchungen an Formationswässern des Eyacher Kohlensäuregebiets. Diploma Thesis, Eberhard Karls Universität TübingenGoogle Scholar
  45. Gal F, Brach M, Braibant G, Beny C, Michel K (2012) What can be learned from natural analogue studies in view of CO2 leakage issues in Carbon Capture and Storage applications? Geochemical case study of Sainte-Marguerite area (French Massif Central). Int J Greenh Gas Control 10:470–485.  https://doi.org/10.1016/j.ijggc.2012.07.015 CrossRefGoogle Scholar
  46. Gautheron C, Moreira M, Allegre C (2005) He, Ne and Ar composition of the European lithospheric mantle. Chem Geol 217:97–112.  https://doi.org/10.1016/j.chemgeo.2004.12.009 CrossRefGoogle Scholar
  47. Geissler WH et al (2005) Seismic structure and location of a CO2 source in the upper mantle of the western Eger (Ohre) Rift, central Europe. Tectonics.  https://doi.org/10.1029/2004tc001672 Google Scholar
  48. Geyer OF, Gwinner MP (2011) Geologie von Baden-Württemberg. Schweizerbart, StuttgartGoogle Scholar
  49. Gilfillan SM et al (2008) The noble gas geochemistry of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain provinces. USA Geochim Cosmochim Acta 72:1174–1198.  https://doi.org/10.1016/j.gca.2007.10.009 CrossRefGoogle Scholar
  50. Graham DW (2002) Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Reviews in mineralogy and geochemistry, vol 47. Mineralogical Soc America, Washington, pp 247–317.  https://doi.org/10.2138/rmg.2002.47.8 Google Scholar
  51. Greiner G (1976) In situ Spannungsmessungen und tektonischer Beanspruchungsplan in Südwestdeutschland. Geol Rundsch 65:55–65.  https://doi.org/10.1007/bf01808455 CrossRefGoogle Scholar
  52. Guerra M, Lombardi S (2001) Soil-gas method for tracing neotectonic faults in clay basins: the Pisticci field (Southern Italy). Tectonophysics 339:511–522.  https://doi.org/10.1016/s0040-1951(01)00072-5 CrossRefGoogle Scholar
  53. Hansell A, Oppenheimer C (2004) Health hazards from volcanic gases: a systematic literature review. Arch Environ Health 59:628–639CrossRefGoogle Scholar
  54. Heinzelmann K (1935) Tektonische Untersuchungen im Vorland der Mittleren Schwäbischen Alb. Dissertation, Technische Hochschule StuttgartGoogle Scholar
  55. Herrmann R (1938) Tektonische Untersuchungen im Württembergisch-Hohenzollerischen Albvorland. Dissertation, Technische Hochschule StuttgartGoogle Scholar
  56. Hilse U, Pudlo D, Gaupp R (2010) Geochemical variations in German Buntsandstein and Rotliegend sandstones: the main CO2 reservoir rocks in Germany. Geochim Cosmochim Acta 74:A405–A405Google Scholar
  57. Hoefs J (2015) Stable isotope geochemistry, vol 7. Springer, BerlinCrossRefGoogle Scholar
  58. Hummel K (1930) Beziehungen der Mineralquellen Deutschlands zum jungen Vulkanismus. Zeitschrift für praktische Geologie 38:Teil 1: 1–8; Teil 2: 20–24Google Scholar
  59. Joseph EP, Beckles DM, Cox L, Jackson VB, Alexander D (2015) An evaluation of ambient sulphur dioxide concentrations from passive degassing of the Sulphur Springs, Saint Lucia geothermal system: Implications for human health. J Volcanol Geotherm Res 304:38–48.  https://doi.org/10.1016/j.jvolgeores.2015.07.036 CrossRefGoogle Scholar
  60. Jung NH, Han WS, Watson ZT, Graham JP, Kim KY (2014) Fault-controlled CO2 leakage from natural reservoirs in the Colorado Plateau, East-Central Utah. Earth Planet Sci Lett 403:358–367.  https://doi.org/10.1016/j.epsl.2014.07.012 CrossRefGoogle Scholar
  61. Kämpf H, Bräuer K, Schumann J, Hahne K, Strauch G (2013) CO2 discharge in an active, non-volcanic continental rift area (Czech Republic): Characterisation (delta C-13, He-3/He-4) and quantification of diffuse and vent CO2 emissions. Chem Geol 339:71–83.  https://doi.org/10.1016/j.chemgeo.2012.08.005 CrossRefGoogle Scholar
  62. Knopf S, May F (2017) Comparing methods for the estimation of CO2 storage capacity in saline aquifers in Germany: regional aquifer based vs. structural trap based assessments. In: Dixon T, Laloui L, Twinning S (eds) 13th International conference on greenhouse gas control technologies, Ghgt-13, vol 114. Energy Procedia, pp 4710–4721.  https://doi.org/10.1016/j.egypro.2017.03.1605
  63. Kumar A, Arora V, Walia V, Bajwa BS, Singh S, Yang TF (2014) Study of soil gas radon variations in the tectonically active Dharamshala and Chamba regions, Himachal Pradesh. India Environ Earth Sci 72:2837–2847.  https://doi.org/10.1007/s12665-014-3188-7 CrossRefGoogle Scholar
  64. Laubscher H (2001) Plate interactions at the southern end of the Rhine graben. Tectonophysics 343:1–19.  https://doi.org/10.1016/s0040-1951(01)00193-7 CrossRefGoogle Scholar
  65. Lewicki JL, Hilley GE (2014) Multi-scale observations of the variability of magmatic CO2 emissions, Mammoth Mountain, CA, USA. J Volcanol Geotherm Res 284:1–15.  https://doi.org/10.1016/j.jvolgeores.2014.07.011 CrossRefGoogle Scholar
  66. LGRB (2006) Geologisches 3D-Landesmodell Baden-Württemberg 1: 500 000, Kartenansicht. Landesamt für Geologie, Rohstoffe und BergbauGoogle Scholar
  67. Mäussnest O (1982) The volcanic phenomena in the Urach region. In: Haenel R (ed) The Urach Geothermal Project. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, pp 157–160Google Scholar
  68. Miocic JM, Gilfillan SMV, McDermott C, Haszeldine RS (2013) Mechanisms for CO2 leakage prevention: a global dataset of natural analogues. In: Haenel M, Juhlin C, Held H, Bruckman V, Tambach T, Kempka T (eds) European Geosciences Union General Assembly 2013, Egudivision Energy, Resources & the Environment, Ere. Energy Procedia, vol 40. Elsevier Science Bv, Amsterdam, pp 320–328.  https://doi.org/10.1016/j.egypro.2013.08.037 Google Scholar
  69. Miocic JM, Gilfillan SMV, Roberts JJ, Edlmann K, McDermott CI, Haszeldine RS (2016) Controls on CO2 storage security in natural reservoirs and implications for CO2 storage site selection Int J Greenh Gas. Control 51:118–125.  https://doi.org/10.1016/j.ijggc.2016.05.019 Google Scholar
  70. Pfanz H (2008) Mofetten - Kalter Atem schlafender Vulkane. RVDL-Verlag, KölnGoogle Scholar
  71. Quenstedt FA (1864) Geologische Ausflüge in Schwaben. Verlag der H. Laupp´schen Buchhandlung, TübingenGoogle Scholar
  72. Rast H (1983) Vulkane und Vulkanismus. Enke Verlag, StuttgartGoogle Scholar
  73. Rittmann A (1936) Vulkane und ihre Tätigkeit, 1st edn. Enke Verlag, StuttgartGoogle Scholar
  74. Roberts JJ, Wood RA, Haszeldine RS (2011) Assessing the health risks of natural CO2 seeps in Italy. Proc Natl Acad Sci USA 108:16545–16548.  https://doi.org/10.1073/pnas.1018590108 CrossRefGoogle Scholar
  75. Rupf I, Nitsch E (2008) Das Geologische Landesmodell von Baden-Württemberg: Datengrundlage, technische Umsetzung und erste geologische Ergebnisse LGRB-Informationen 21, Freiburg i. BrGoogle Scholar
  76. Sandig C, Sauer U, Brauer K, Serfling U, Schutze C (2014) Comparative study of geophysical and soil–gas investigations at the Hartousov (Czech Republic) natural CO2 degassing site. Environ Earth Sci 72:1421–1434.  https://doi.org/10.1007/s12665-014-3242-5 CrossRefGoogle Scholar
  77. Schädel K (1982) The geology of the heat anomaly of Urach. In: Haenel R (ed) The Urach Geothermal Project. E. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, pp 147–156Google Scholar
  78. Schloemer S et al (2013) A review of continuous soil gas monitoring related to CCS: technical advances and lessons learned. Appl Geochem 30:148–160.  https://doi.org/10.1016/j.apgeochem.2012.08.002 CrossRefGoogle Scholar
  79. Schmidt A (1964) Geologische Karte von Baden-Württemberg 1:25000 Blatt 7519 RottenburgGoogle Scholar
  80. Schmidt A (1975a) Erläuterungen zur geologischen Karte von Baden-Württemberg 1:25000 Blatt 7518 Horb. Landesvermessungsamt Baden-Württemberg, StuttgartGoogle Scholar
  81. Schmidt A (1975b) Geologische Karte von Baden-Württemberg 1:25000 Blatt 7518 HorbGoogle Scholar
  82. Schmincke H-U (2013) Vulkanismus. Primus Verlag, DarmstadtGoogle Scholar
  83. Schönenberg R (1973) Zur Tektonik des südwestdeutschen Schichtstufenlandes unter dem Aspekt der Plattentektonik. Oberrheinische Geologische Abhandlungen 22:75–86Google Scholar
  84. Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics.  https://doi.org/10.1029/2001tc900022 Google Scholar
  85. Schütze C et al (2012) Natural analogues: a potential approach for developing reliable monitoring methods to understand subsurface CO2 migration processes Environ. Earth Sci 67:411–423.  https://doi.org/10.1007/s12665-012-1701-4 CrossRefGoogle Scholar
  86. Schwarz HU (2012) The Swabian-Franconian fault pattern. Z Dtsch Ges Geowiss 163:411–446.  https://doi.org/10.1127/1860-1804/2012/0163-0411 Google Scholar
  87. Shinohara H (2008) Excess degassing from volcanoes and its role on eruptive and intrusive activity. Rev Geophys.  https://doi.org/10.1029/2007rg000244 Google Scholar
  88. Simon T (1987) Zur Entstehung der Schichtstufenlandschaft im nördlichen Baden-Württemberg Jahreshefte des geologischen. Landesamtes Baden-Württemberg 29:145–167Google Scholar
  89. Smets B, Tedesco D, Kervyn F, Kies A, Vaselli O, Yalire MM (2010) Dry gas vents (“mazuku”) in Goma region (North-Kivu, Democratic Republic of Congo): Formation and risk assessment. J Afr Earth Sci 58:787–798.  https://doi.org/10.1016/j.jafrearsci.2010.04.008 CrossRefGoogle Scholar
  90. Ströbel W (1952) Zur Landschaftsgeschichte der Filder, südlich von Stuttgart Jahreshefte der Geologischen Abteilung des Württembergischen. Statistischen Landesamtes 2:118–143Google Scholar
  91. Sugisaki R et al (1983) Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. J Geol 91:239–258CrossRefGoogle Scholar
  92. Uehara S, Shimamoto T (2007) Permeability of fault rocks from the Median Tectonic Line in Ohshika-mura, Nagano, Japan as studied by pressure-cycling tests. In: Lewis H, Couples GD (eds) Relationship between damage and localization, vol 289. Geological Society Special Publication, London, pp 143–160.  https://doi.org/10.1144/sp289.9 Google Scholar
  93. Ufrecht W (2006) Zusammensetzung und Herkunft der Gase von Stuttgart-Bad Cannstatt und -Berg Hydrogeologie des Stuttgarter Mineralwassersystems-Schriftenreihe des Amtes für Umweltschutz-Landeshauptstadt. Stuttgart 3:103–114Google Scholar
  94. Vialle S, Druhan JL, Maher K (2016) Multi-phase flow simulation of CO2 leakage through a fractured caprock in response to mitigation strategies. Int J Greenh Gas Control 44:11–25.  https://doi.org/10.1016/j.ijggc.2015.10.007 CrossRefGoogle Scholar
  95. Villinger E (1982) Hydrogeological aspects of the geothermal area of Urach. In: Haenel R (ed) The Urach Geothermal Project. E. Schweizerbart´sche Verlagsbuchhandlung, Stuttgart, pp 165–178Google Scholar
  96. Villinger E (1994) Geologie und Hydrogeologie des Raumes Rottenburg am Neckar (Baden-Württemberg). Wasserwirtschaft 84:402–408Google Scholar
  97. Villinger E (1998) Zur Flußgeschichte von Rhein und Donau in Südwestdeutschland. Jahresberichte und Mitteilungen des oberrheinischen geologischen Vereins 80:361–398CrossRefGoogle Scholar
  98. Walia V, Lin SJ, Fu CC, Yang TF, Hong WL, Wen KL, Chen CH (2010) Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan. Appl Geochem 25:602–607.  https://doi.org/10.1016/j.apgeochem.2010.01.017 CrossRefGoogle Scholar
  99. Ziegler PA, Dezes P (2005) Evolution of the lithosphere in the area of the Rhine Rift System. Int J Earth Sci 94:594–614.  https://doi.org/10.1007/s00531-005-0474-3 CrossRefGoogle Scholar
  100. Ziegler PA, Dezes P (2006) Crustal evolution of Western and Central Europe. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society Memoirs, vol 32. Geological Soc Publishing House, Bath, pp 43–56.  https://doi.org/10.1144/gsl.mem.2006.032.01.03 Google Scholar
  101. Ziegler PA, Dezes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: Timing and controlling mechanisms. Glob Planet Change 58:237–269.  https://doi.org/10.1016/j.gloplacha.2006.12.004 CrossRefGoogle Scholar
  102. Ziegler PA, Cloetingh S, vanWees JD (1995) Dynamics of intra-plate compressional deformation: the Alpine foreland and other examples. Tectonophysics 252:7–59.  https://doi.org/10.1016/0040-1951(95)00102-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of GeosciencesUniversity of TübingenTübingenGermany

Personalised recommendations