Heavy metal concentrations in sediments and in mussels from Argentinean coastal environments, South America

  • N. S. BuzziEmail author
  • J. E. Marcovecchio
Thematic Issue
Part of the following topical collections:
  1. IV RAGSU -- Advances in Geochemistry of the Surface in Argentina


Among environmental contaminants, heavy metals are currently considered to be some of the most toxic ones present worldwide due to their harmful effects on organisms and ability to bioaccumulate in aquatic systems. In this work, the concentration of heavy metals (Cd, Cu, Pb, Zn, Ni and Cr) in Brachidontes rodriguezii and in the fine sediments of several coastal sites at the southwest of Buenos Aires Province, Argentina is analyzed. The Bahía Blanca Estuary and Pehuen-Có beach are located in a highly complex oceanographic and ecological regional system, which creates the basis of one of the most valuable Argentinean habitats for fishing commercial species. An assessment, which involved analyzing distribution pattern of trace metals, comparative studies with sediment and ecological quality guidelines; and a sequential and integrated index analyses approach (containing Metal Pollution Index, Biosediment Accumulation Factor, Geo-accumulation Index (Igeo), Pollution Load Index and the mean Probable Effect Level quotients), was followed to estimate enrichment and risks of heavy metals in the sediments and in the mussels from these study areas. The results showed higher concentrations of some heavy metals (e.g., Cd, Cr and Ni) in mussels collected at Pehuen-Có, while no spatial differences in sediments were observed. According to the international environmental regulations, mean values of trace metals in mussels allowed to place both sites between “unpolluted and moderately polluted” and between the “low and medium category” of pollution. Furthermore, the mean concentrations found were within the detected ranges in other coastal sites worldwide.


Heavy metals Coastal areas Mussels Sediments Quality guidelines 



We thank W. Melo for providing the map and collaborating with figures elaboration, to A.L. Oliva, P. Quintas and M. Orazi for assistance in the field and sample processing. We thank the IADO executive directors, the staff of IADO IV research vessel for the logistic and cooperation on board and the Chemical Oceanography Area’s staff. This work was supported by research grants by National Council of Scientific and Technological Research (CONICET-Argentina) (PIP D-738 2011) and National Agency for Promotion of Science and Technology-ANCPCyT (PICT 2012-1383).


  1. Adami ML, Tablado A, López Gappa J (2004) Spatial and temporal variability in intertidal assemblages dominated by the mussel Brachidontes rodriguezii (d’Orbigny, 1846). Hydrobiologia 52:49–59CrossRefGoogle Scholar
  2. Adami ML, Tablado A, Sodor MA (2008) Population dynamics of the intertidal mytilid Brachidontes rodriguezii (Bivalvia) on a rocky shore. Thalassas 24:21–27Google Scholar
  3. Angulo E (1996) The Tomlinson pollution load index applied to heavy metal ‘Mussel-Watch’ data: a useful index to assess coastal pollution. Sci Total Environ 187:49–56CrossRefGoogle Scholar
  4. Ansari T, Marr I, Tariq N (2004) Heavy metals in marine pollution perspective—a mini review. J Appl Sci 4(1):1–20CrossRefGoogle Scholar
  5. Apeti DA, Lauenstein GG, Riedel GF (2009) Cadmium distribution in coastal sediments and mollusks of the US. Mar Pollut Bull 58:1016–1024CrossRefGoogle Scholar
  6. APHA-AWWA-WEF (1998) In: Clesceri LS, Greenberg AE, Eaton AD (eds) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, WashingtonGoogle Scholar
  7. Barakat A, El Baghdadi M, Rais J, Nadem S (2012) Assessment of heavy metal in surface sediments of day river at Beni-Mellal Region, Morocco. Res J Environ Earth Sci 4(8):797–806Google Scholar
  8. Bewers JM, Barry PJ, MacGregor DJ (1987) Distribution and cycling of cadmium in the environment. In: Nriagu JO, Sprague JB (eds) Cadmium in the aquatic environment, vol 1. Wiley, New York, pp 1–18 (Adv Environ Sci Technol) Google Scholar
  9. Blanck H (2002) A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Hum Ecol Risk Assess 8(5):1003–1034CrossRefGoogle Scholar
  10. Boening DW (1999) An evaluation of bivalves as biomonitors of heavy metals pollution in marine waters. Environ Monit Assess 55:459–470CrossRefGoogle Scholar
  11. Boisson F, Cotret O, Fowler SW (1998) Bioaccumulation and retention of lead in the mussel Mytilus galloprovincialis following uptake from sea water. Sci Total Environ 222:55–61CrossRefGoogle Scholar
  12. Botté SE (2005) El rol de la vegetación en el ciclo biogeoquímico de los metales pesados en humedales del estuario de Bahía Blanca. Doctoral thesis, Universidad Nacional del Sur, ArgentinaGoogle Scholar
  13. Botté SE, Freije RH, Marcovecchio JE (2010) Distribution of several heavy metals in tidal flats sediments within Bahía Blanca Estuary (Argentina). Water Air Soil Pollut 210:371–388CrossRefGoogle Scholar
  14. Bryan GW, Langston WJ, Hummerstone LG, Burr GR (1985) A guide to the assessment of heavy metal contamination in estuaries using biological indicators. Mar Biol Assoc UK Occas Publ 4:1–92Google Scholar
  15. Buchman MF (1999) NOAA screening quick reference tables, NOAA HAZMAT Report 99–1. Coastal Protection and Restoration Division, National Oceanic and Atmospheric Administration, Seattle WA, pp 12Google Scholar
  16. Buzzi N, Oliva AL, Arias AH, Marcovecchio JE (2017) Assessment of trace metal accumulation in native mussels (Brachidontes rodriguezii) from a South American temperate estuary. Environ Sci Pollut Res. Google Scholar
  17. Cardellicchio N, Buccolieri A, Di Leo A, Giandomenico S, Spada L (2008) Levels of metals in reared mussels from Taranto Gulf (Ionian Sea, Southern Italy). Food Chem 107:890–896CrossRefGoogle Scholar
  18. Carroza C, Fernández Aráoz N and Pájaro M (2009) Variado Costero y su Interacción con Especies Pelágicas. Mar del Plata, Argentina: Informe de Asesoramiento y Transferencia INIDEP, Informe 2/09Google Scholar
  19. Catsiki V, Hatzianestis I, Strogyloudi E, Belou O, Gogou M, Rigas F (2001) Distribution of metals & organic contaminants in mussels from Thermaikos Gulf. In: 7th International conference on environmental science and technology Ermoupolis, Syros IslandGoogle Scholar
  20. Censi P, Spoto SE, Saiano F, Sprovieri M, Mazzola S, Nardone G et al (2006) Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand. Chemosphere 64:1167–1176CrossRefGoogle Scholar
  21. Chong K, Wang WX (2001) Comparative studies on the biokinetics of Cd, Cr and Zn in the green mussel Perna viridis and the Manila clam Ruditapes philippinarum. Environ Pollut 115:107–121CrossRefGoogle Scholar
  22. Das JD, Nolting RF (1993) Distribution of trace metals in sediments and pore waters in the N.W. Mediterranean Sea. NIOZ, EROSE-200 Project, pp 1–10Google Scholar
  23. Delgado AL, Menéndez MC, Piccolo MC, Perillo GME (2017) Hydrography of the inner continental shelf along the southwest Buenos Aires Province, Argentina: influence of an estuarine plume on coastal waters. J Coast Res 33(4):907–916. CrossRefGoogle Scholar
  24. Duarte CA, Giarratano E, Amin O, Comoglio L (2011) Heavy metal concentrations and biomarkers of oxidative stress in native mussels (Mytilus edulis chilensis) from Beagle Channel coast (Tierra del Fuego, Argentina). Mar Pollut Bull 62:1895–1904CrossRefGoogle Scholar
  25. Duarte CA, Giarratano E, Gil MN (2012) Trace metal content in sediments and autochthonous intertidal organisms from two adjacent bays near Ushuaia, Beagle Channel (Argentina). Mar Environ Res 79:55–62CrossRefGoogle Scholar
  26. Farrington JW, Tripp BW (1995) International mussell watch project-final report. NOAA Administration, USA, pp 55–59Google Scholar
  27. Federal Register (1984) Definition and procedure for determination of the method detection limit. EPA, 40 CFR Part 136, Appendix B, Revision 1.11 1 (11), pp 198–199Google Scholar
  28. Fernández B, Campillo JA, Martínez-Gómez C, Benedicto J (2010) Antioxidant responses in gills of mussel (Mytilus galloprovincialis) as biomarkers of environmental stress along the Spanish Mediterranean coast. Aquat Toxicol 99:186–197CrossRefGoogle Scholar
  29. Fernández-Tajes J, Flórez F, Pereira S, Rábade T, Laffon B, Méndez J (2011) Use of three bivalve species for biomonitoring a polluted estuarine environment. Environ Monit Assess 177:289–300CrossRefGoogle Scholar
  30. Ferrer LD (2001) Estudio de los diversos metales pesados en sedimentos del estuario de Bahía Blanca y sus efectos tóxicos sobre el cangrejo Chasmagnathus granulata. Doctoral thesis, Universidad Nacional del Sur, ArgentinaGoogle Scholar
  31. Förstner U (1989) Contaminated sediments. Lecture notes in earth sciences. Springer, Berlin, p 157Google Scholar
  32. Förstner U, Wittmann GTW (1979) Metal pollution in the aquatic environment. Springer, BerlinCrossRefGoogle Scholar
  33. Freije RH, Marcovecchio JE (2007) Oceanografía química. In: Piccolo MC, Hoffmeyer M (eds) Ecosistema del Estuario de Bahía Blanca. Instituto Argentino de Oceanografía (IADOCONICET), Bahía Blanca, pp 69–78Google Scholar
  34. Freije RH, Spetter CV, Marcovecchio JE, Popovich CA, Botté SE, Negrín V, Arias A, Delucchi F, Asteasuain RO (2008) Water chemistry and nutrients of the Bahía Blanca Estuary. In: Neves R, Baretta JW, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press, Lisbon, pp 241–254Google Scholar
  35. Fung CN, Lam JCW, Zheng GJ, Connell DW, Monirith I, Tanabe S, Richardson BJ, Lam PKS (2004) Mussel-based monitoring of trace metal and organic contaminants along the east coast of China using Perna viridis and Mytilus edulis. Environ Pollut 127:203–216CrossRefGoogle Scholar
  36. Gayoso AM, Muglia VH (1991) Blooms of the surf-zone diatom Gonioceros armatus (Bacillariophyceae) on the South Atlantic coast (Argentina). Diatom Res 6:247–253CrossRefGoogle Scholar
  37. GESAMP (IMO/FAO/IJNESCO/WMO/IAEA/UN/IJNEP) (1982) The health of the oceans: Rep Stad GESAMP 15, pp 108Google Scholar
  38. Giarratano E, Duarte CA, Amin OA (2010) Biomarkers and heavy metal bioaccumulation in mussels transplanted to coastal waters of the Beagle Channel. Ecotoxicol Environ Saf 73:270–279CrossRefGoogle Scholar
  39. Gibb J, Alle JR, Hawkins SJ (1996) The application of biomonitors for the assessment of mine-derived pollution on the West Coast of the Isle of man. Mar Pollut Bull 32:513–519CrossRefGoogle Scholar
  40. Gil MN, Torres A, Harvey M, Esteves JL (2006) Metales pesados en organismos marinos de la zona costera de la Patagonia argentina continental. Rev Biol Mar Oceanogr 41(2):167–176CrossRefGoogle Scholar
  41. Grecco LE, Gomez EA, Botté SE, Marcos AO, Marcovecchio JE, Cuadrado DG (2011) Natural and anthropogenic heavy metals in estuarine cohesive sediments: geochemistry and bioavailability. Ocean Dyn 61:285–293CrossRefGoogle Scholar
  42. Guinder VA, Molinero JC, Popovich CA, Marcovecchio JE, Sommer U (2012) Dominance of the planktonic diatom Thalassiosira minima in recent summers in the Bahía Blanca Estuary, Argentina. J Plankton Res 34:995–1000CrossRefGoogle Scholar
  43. Gundacker C (1999) Tissue-specific heavy metal (Cd, Pb, Cu, Zn) deposition in a natural population of the zebra mussel Dreissena polymorpha Pallas. Chemosphere 38:3339–3356CrossRefGoogle Scholar
  44. IAEA (1990) Guidebook on applications of radiotracers in industry. Technical report series No. 316Google Scholar
  45. Joksimovic D, Tomic I, Stankovic AR, Jovic M, Stankovic S (2011) Trace metal concentrations in Mediterranean blue mussel and surface sediments and evaluation of the mussels quality and possible risks of high human consumption. Food Chem 127:632–637CrossRefGoogle Scholar
  46. Jones RP, Clarke JU (2005) Analytical chemistry detection limits and the evaluation of dredged sediment. ERDC/TN EEDP-04–36. United States Army Engineer Research and Development Center, VicksburgGoogle Scholar
  47. Kennish MJ (1997) Practical book of estuarine and marine pollution. CRC, Boca Raton, p 310Google Scholar
  48. Kimbrough KL, JohnsonWE, Lauenstein GG, Christensen JD, Apeti DA (2008) An assessment of two decades of contaminant monitoring in the nation’s coastal zone. NOAA, Report no. NOS NCCOS, pp 74Google Scholar
  49. Lafabrie C, Pergent G, Kantin R, Pergent-Martini C, Gonzalez J-L (2007) Trace metals assessment in water, sediment, mussel and seagrass species—validation of the the use of Posidonia oceanica as a metal biomonitor. Chemosphere 68(11):2033–2039CrossRefGoogle Scholar
  50. Laffon B, Rabade T, Pásaro E, Méndez J (2006) Monitoring of the impact of Prestige oil spill on Mytilus galloprovincialis from Galician coast. Environ Int 32:342–348CrossRefGoogle Scholar
  51. Liu JH, Kueh CSW (2005) Biomonitoring of heavy metals and trace organics using the intertidal mussel Perna viridis in Hong Kong coastal waters. Mar Pollut Bull 51:857–875CrossRefGoogle Scholar
  52. Livingstone DR (1993) Biotechnology and pollution monitoring: use of molecular biomarkers in the aquatic environment. J Chem Technol Biotechnol 57:195–211CrossRefGoogle Scholar
  53. Long ER, Field LJ, MacDonald DD (1998) Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ Toxicol Chem 17:714–727CrossRefGoogle Scholar
  54. Lucas A, Beninger PG (1985) The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 44:187–200CrossRefGoogle Scholar
  55. Luo W, Lu Y, Wang T, Hu W, Jiao W, Naile JE, Khim JS, Giesy JP (2010) Ecological risk assessment of arsenic and elements in sediments of coastal areas of Northern Bohai and Yellow Seas, China. Ambio 39:367–375. CrossRefGoogle Scholar
  56. Maanan M (2008) Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environ Pollut 153:176–183CrossRefGoogle Scholar
  57. MacdDonald DD, Scott Carr R, Calder FD, Long ER, Ingersoll CG (1996) Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5:253–278CrossRefGoogle Scholar
  58. MacdDonald DD, Ingersoll CG, Berger TA (2000) Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Contam Toxicol 39:20–31CrossRefGoogle Scholar
  59. Marcovecchio JE, Ferrer LD (2005) Distribution and geochemical partitioning of heavy metals in sediments of the Bahía Blanca Estuary, Argentina. J Coast Res 21:826–834CrossRefGoogle Scholar
  60. Mauri M, Baraldi E (2003) Heavy metal bioaccumulation in Mytilus galloprovincialis: a transplantation experiment in Venice Lagoon. Chem Ecol 19(2–3):79–90CrossRefGoogle Scholar
  61. Melo WD (2004) Génesis del estuario de Bahía Blanca: Relación morfodinámica y temporal con su cuenca hidrográfica. Doctoral thesis, Universidad Nacional del Sur, ArgentinaGoogle Scholar
  62. Menéndez MC, Delgado AL, Berasategui AA, Piccolo MC, Hoffmeyer MS (2016) Seasonal and tidal dynamics of water temperature, salinity, chlorophyll-a, suspended particulate matter, particulate organic matter, and zooplankton abundance in a shallow, mixed estuary (Bahía Blanca, Argentina). J Coast Res 32:1051–1061. CrossRefGoogle Scholar
  63. Molvær J, Knutzen J, Magnusson J, Rygg B, Skei J, Sørensen J (1997) Klassifisering av miljøkvalitet i fjorder og kystfarvann. Veiledning. Classification of environmental quality in fjords and coastal waters. A guide. Norwegian Pollution Control Authority. TA no. TA-1467/1997. 36 pp. ISBN 82-7655-367-2Google Scholar
  64. Mubiana VK, Vercauteren K, Blust R (2006) The influence of body size, condition index and tidal exposure on the variability in metal bioaccumulation in Mytilus edulis. Environ Pollut 144:272–279CrossRefGoogle Scholar
  65. Muller G (1981) The heavy metal content of the sediments of the Neckar and its tributaries: an Inventory. Chem Zeitung 105:157–164Google Scholar
  66. Müller G (1979) Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umschau 79(24):778–783Google Scholar
  67. Narbonne JF, Aarab N, Clérandeau C, Daubeze M, Narbonne J, Champeau O, Garrigues P (2005) Scale of classification based on biochemical markers in mussels: application to pollution monitoring in Mediterranean coasts and temporal trends. Biomarkers 10:58–71CrossRefGoogle Scholar
  68. Negrin VL (2010) El rol de las marismas del estuario de Bahía Blanca en el ciclo bio-geoquímico de nutrientes inorgánicos y de materia orgánica. Doctoral thesis, Universidad Nacional del Sur, Bahía Blanca, ArgentinaGoogle Scholar
  69. Okumus I, Stirling HP (1998) Seasonal variations in the meat weight, Condition Index and biochemical composition of mussels (Mytilus edulis L.) in suspended culture in two Scottish sea lochs. Aquaculture 159(3–4):249–261CrossRefGoogle Scholar
  70. Pérez AA, Fajardo MA, Strobl AM, Pérez LB, Piñeiro A, López CM (2005) Contenido de plomo, cromo y cadmio en moluscos comestibles del golfo San Jorge (Argentina). Acta Toxicol Argent 13(1):20–25Google Scholar
  71. Perillo GME, Piccolo MC, Palma ED, Pérez DE, Pierini JO (2004) Oceanografía Física. In: Piccolo MC, Hoffmeyer MS (eds) El Ecosistema del Estuario de Bahía Blanca. EdiUNS, Bahía Blanca, pp 61–67Google Scholar
  72. Piccolo MC, Perillo GME (1990) Physical characteristics of the Bahía Blanca Estuary (Argentina). Estuar Coast Shelf Sci 31(1):303–317CrossRefGoogle Scholar
  73. Piccolo MC, Perillo GME, Melo WD (2008) The Bahía Blanca Estuary: an integrated overview of its geomorphology and dynamics. In: Neves R, Baretta J, Mateus M (eds) Perspectives on integrated coastal zone management in South America. IST Press, Lisbon, pp 219–230Google Scholar
  74. Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31:183–192CrossRefGoogle Scholar
  75. Ray S, Macknight SD (1984) Trace metal distribution in Saint John Harbour sediments. Mar Poll Bull 15:12–18CrossRefGoogle Scholar
  76. Ruiz F (2001) Trace metals in estuarine sediments from the Southwestern Spanish coast. Mar Pollut Bull 42(6):482–490CrossRefGoogle Scholar
  77. Sáenz LA, Seibert EL, Zanette J, Fiedler HD, Curtius AJ, Ferreira JF, Alves de Almeida E, Freire Marques MR, Dias Bainy AC (2010) Biochemical biomarkers and metals in Perna perna mussels from mariculture zones of Santa Catarina, Brazil. Ecotoxicol Environ Saf 73:796–804CrossRefGoogle Scholar
  78. Saiz-Salinas JI, Ruiz JM, France-Zubillaga G (1996) Heavy metal levels in intertidal sediments and biota from the Bidasoa Estuary. Mar Pollut Bull 32:69–71CrossRefGoogle Scholar
  79. Salomons V, Förstner U (1984) Metals in the hydrocycle. Springer, Berlin, Heidelber, p 349CrossRefGoogle Scholar
  80. Shulkin VM, Presley BJ, Kavun V (2003) Metal concentrations in mussel Crenomytilus grayanus and oyster Crassostrea gigas in relation to contamination of ambient sediments. Environ Int 29:493–502CrossRefGoogle Scholar
  81. Simonetti P, Botté SE, Fiori SM, Marcovecchio JE (2013) Burrowing crab (Neohelice granulata) as a potential bioindicator of heavy metals in the Bahía Blanca Estuary, Argentina. Arch Environ Contam Toxicol 64:110–118CrossRefGoogle Scholar
  82. Spada L, Annicchiarico C, Cardellicchio N, Giandomenico S, Di Leo A (2013) Heavy metals monitoring in the mussel Mytilus galloprovincialis from the Apulian coast (Southern Italy). Medit Mar Sci 14(1):99–108CrossRefGoogle Scholar
  83. Strogyloudi E, Angelidis MO, Christides A, Papathanassiou E (2012) Metal concentrations and metallothionein levels in Mytilus galloprovincialis from Elefsis bay (Saronikos gulf, Greece). Environ Monit Assess 184:7189–7205CrossRefGoogle Scholar
  84. Szefer P, Geldon J, Ali AA, Bawazir A, Sad M (1997) Distribution and association of trace metals in soft tissue and byssus of mollusc Perna perna from the Gulf of Aden, Yemen. Environ Int 23(1):53–61CrossRefGoogle Scholar
  85. Szefer P, Ali AA, Ba-Haroon AA, Rajeh AA, Geldon J, Nabrzyski M (1999) Distribution and relationships of selected trace metals in molluscs and associated sediments from the Gulf of Aden, Yemen. Environ Pollut 106:299–314CrossRefGoogle Scholar
  86. Szefer P, Kim B-S, Kim C-K, Kim E-H, Lee C-B (2004) Distribution and coassociations of trace elements in soft tissue and byssus of Mytilus galloprovincialis relative to the surrounding seawater and suspended matter of the southern part of the Korean Peninsula. Environ Pollut 129:209–228CrossRefGoogle Scholar
  87. Szefer P, Fowler SW, Ikuta K, Paez Osuna F, Ali AA, Kim B-S, Fernandes HM, Belzunce M-J, Guterstam B, Kunzendorf H, Wołowicz M, Humme H, Deslous-Paoli M (2006) A comparative assessment of heavy metal accumulation in soft parts and byssus of mussels from subarctic, temperate, subtropical and tropical marine environments. Environ Pollut 139:70–78CrossRefGoogle Scholar
  88. Tomlinson DL, Wilson JG, Hariis CR, Jeffrey DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol. Wiss. Meeresunters 33:566–575CrossRefGoogle Scholar
  89. Torroglosa ME (2015) Biología reproductiva y crecimiento de Brachidontes rodriguezii (d’Orbigny, 1846) en sustratos duros artificiales en playas arenosas de la provincia de Buenos Aires. Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires. Doctoral Thesis, pp 142Google Scholar
  90. Turekian KK, Wedepohl HK (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192CrossRefGoogle Scholar
  91. Usero J, González-Regalado E, Gracia I (1997) Trace metals in the bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic Coast of Southern Spain. Environ Int 23(3):291–298CrossRefGoogle Scholar
  92. Usero J, Morillo J, Gracia I (2005) Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere 59:1175–1181CrossRefGoogle Scholar
  93. Van Vuuren JHJ, Du Prez HA, Wepener V, Adendorff A, Barnhoorn IEJ (1999) Lethal and sublethal effects of metals on the physiology of fish. An experimental approach with monitoring support. Water Research Commission, Pretoria, WRC. Report No. 608/1/99Google Scholar
  94. Vázquez NN, Gil MN, Esteves JL, Narvarte MA (2007) Monitoring heavy metal pollution in San Antonio Bay, Río Negro, Argentina. Bull Environ Contam Toxicol 79:121–125CrossRefGoogle Scholar
  95. Widdows J, Nasci C, Fossato VU (1997) Effects of pollution on the scope for growth of mussels (Mytilus galloprovincialis) from the Venice Lagoon, Italy. Mar Environ Res 43(1–2):69–79CrossRefGoogle Scholar
  96. Williamson P (1980) Variables affecting body burdens of lead, zinc and cadmium in a roadside population of snail Cepaca hortinsis. Mull Oecol 44:213–220CrossRefGoogle Scholar
  97. Wong CKC, Cheung RYH, Wong MH (2000) Heavy metal concentrations in green-lipped mussels collected from Tolo Harbour and markets in Hong Kong and Shenzhen. Environ Pollut 109:165–171CrossRefGoogle Scholar
  98. Yap CK, Cheng WH, Karami A, Ismail A (2016) Health risk assessments of heavy metal exposure via consumption of marine mussels collected from anthropogenic sites. Sci Total Environ 553:285–296CrossRefGoogle Scholar
  99. Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150CrossRefGoogle Scholar
  100. Zuykov M, Pelletier E, Harper DAT (2013) Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring. Chemosphere 93:201–208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Argentino de Oceanografía (IADO)Universidad Nacional del Sur (UNS) – CONICET, Bahía BlancaBahía BlancaArgentina
  2. 2.Departamento de Biología, Bioquímica y FarmaciaUniversidad Nacional del Sur (UNS)Bahía BlancaArgentina
  3. 3.Universidad Tecnológica Nacional – FRBBBahía BlancaArgentina
  4. 4.Universidad FASTAMar del PlataArgentina

Personalised recommendations