Evaluation and modeling scouring and sedimentation around downstream of large dams

  • Azin Movahedi
  • M. R. Kavianpour
  • Omid Aminoroayaie YaminiEmail author
Original Article


Flip buckets are often used at the end of chute spillways to dissipate energy and direct flow to submergence plunge pool and especially in large dams. Flip buckets with central deviation also are a specific and new design of these buckets that have a transverse slope and are mixed in plan with a curvature. In this paper, the experimental and numerical simulation study of sediment scouring in such flip bucket has been targeted. Extensive experimental data are obtained from physical model studies conducted at Water Research Institute, Iran. The flow field with various flood discharges in a range of Froude numbers (Fr = \(V/\sqrt {gh}\): 3.5–7.5) in Flow3D model was compared to experimental results obtained from a similar model. Analyzing the simulated models in the Flow3D model and comparing the results with the experimental model, the hydraulic parameters of the pressure, velocity and depth of flow are determined. Considering the accuracy of the numerical model in simulating bed scouring, this model can be used for similar cases in large dams. The results of the simulation model compare well with the experimental results in parameters of the maximum scour depth, profile scouring and the ridge height which accumulates around downstream of the scour hole. This investigation improves the understanding of bed topography effects of downstream dams in high-velocity jet impact based on experimental observations and simulation analysis.


Physical model Sediment scouring Large dams Flip buckets Flow3D model 


  1. Althaus J, Isabella JM, De Cesare G, Schleiss A (2011) Fine sediment release from a reservoir by controlled hydrodynamic mixing. In: Proceedings of the 34th IAHR world congress, vol 400, No. EPFL-CONF-168557, pp 1763–1770Google Scholar
  2. Aminoroayaie Yamini O, Kavianpour MR, Mousavi SH, Movahedi A, Bavandpour M (2017) Experimental investigation of pressure fluctuation on the bed of compound flip buckets. ISH J Hydraul Eng 24(1):45–52CrossRefGoogle Scholar
  3. Annandale GW (1995) Erodibility. J Hydraul Res 33(4):471–494CrossRefGoogle Scholar
  4. Annandale GW (2006) Scour technology. McGraw-Hill, New YorkGoogle Scholar
  5. Asadollahi P, Tonon F, Federspiel MP, Schleiss AJ (2011) Prediction of rock block stability and scour depth in plunge pools. J Hydraul Res 49(6):750–756CrossRefGoogle Scholar
  6. Avila H, Pitt R (2009) Physical experimentation and CFD modeling to evaluate sediment scour in catchbasin sumps. In: World environmental and water resources congress 2009: Great Rivers, pp 1–10Google Scholar
  7. Bollaert EF, Schleiss AJ (2005) Physically based model for evaluation of rock scour due to high-velocity jet impact. J Hydraul Eng 131(3):153–165CrossRefGoogle Scholar
  8. Brethour J (2003) Modeling sediment scour. Flow Science, Santa FeGoogle Scholar
  9. Brethour J, Burnham J (2010) Modeling sediment erosion and deposition with the FLOW-3D sedimentation & scour model. Flow Science Technical Note, FSI-10-TN85, pp 1–22Google Scholar
  10. Canepa S, Hager WH (2003) Effect of jet air content on plunge pool scour. J Hydraul Eng 129(5):358–365CrossRefGoogle Scholar
  11. Chau KW, Jiang YW (2001) 3D numerical model for Pearl River estuary. J Hydraul Eng 127(1):72–82CrossRefGoogle Scholar
  12. Chau KW, Jiang YW (2004) A three-dimensional pollutant transport model in orthogonal curvilinear and sigma coordinate system for Pearl river estuary. Int J Environ Pollut 21(2):188–198CrossRefGoogle Scholar
  13. Clarke RFA (1965) British Permian saccate and monosulcate miospores. Palaeontology 8(2):322–354Google Scholar
  14. Ding Y, Yan T, Yao Q, Dong X, Wang X (2016) A new type of temperature-based sensor for monitoring of bridge scour. Measurement 78:245–252CrossRefGoogle Scholar
  15. Doddiah D, Albertson ML, Thomas RK (1953) Scour from jets. CER; 54-4Google Scholar
  16. Ebtehaj I, Sattar AM, Bonakdari H, Zaji AH (2017) Prediction of scour depth around bridge piers using self-adaptive extreme learning machine. J Hydroinf 19(2):207–224CrossRefGoogle Scholar
  17. Enjilzadeh MR, Nohani E (2016) Numerical modeling of flow field in morning glory spillways and determining rating curve at different flow rates. Civ Eng J 2(9):448–457Google Scholar
  18. Farhoudi J, Shayan HK (2014) Investigation on local scour downstream of adverse stilling basins. Ain Shams Eng J 5(2):361–375CrossRefGoogle Scholar
  19. Ghodsi H, Khanjani MJ, Beheshti AA (2018) Evaluation of Harmony Search Optimization to Predict Local Scour Depth around Complex Bridge Piers. Civ Eng J 4(2):402–412CrossRefGoogle Scholar
  20. Gisonni C, Hager WH (2008) Spur failure in river engineering. J Hydraul Eng 134(2):135–145CrossRefGoogle Scholar
  21. Hersberger DS, Franca MJ, Schleiss AJ (2015) Wall-roughness effects on flow and scouring in curved channels with gravel beds. J Hydraul Eng 142(1):04015032CrossRefGoogle Scholar
  22. Hong JH, Goyal MK, Chiew YM, Chua LH (2012) Predicting time-dependent pier scour depth with support vector regression. J Hydrol 468:241–248CrossRefGoogle Scholar
  23. Hunter TN, Peakall J, Unsworth TJ, Acun MH, Keevil G, Rice H, Biggs S (2013) The influence of system scale on impinging jet sediment erosion: observed using novel and standard measurement techniques. Chem Eng Res Des 91(4):722–734CrossRefGoogle Scholar
  24. Jia Yafei, Kitamura T, Wang SS (2001) Simulation of scour process in plunging pool of loose bed-material. J Hydraul Eng 127(3):219–229CrossRefGoogle Scholar
  25. Johnson RH, Tallis JH, Wilson P (1990) The Seal Edge Coombes, North Derbyshire—a study of their erosional and depositional history. J Quat Sci 5(1):83–94CrossRefGoogle Scholar
  26. Jüstrich S, Pfister M, Schleiss AJ (2016) Mobile riverbed scour downstream of a Piano Key weir. J Hydraul Eng 142(11):04016043CrossRefGoogle Scholar
  27. Khatsuria RM (2004) Hydraulics of spillways and energy dissipators. CRC Press, Boca RatonCrossRefGoogle Scholar
  28. Kobus H, Leister P, Westrich B (1979) Flow field and scouring effects of steady and pulsating jets impinging on a movable bed. J Hydraul Res 17(3):175–192CrossRefGoogle Scholar
  29. Li T, He B, Wang R, Chen Z, Zhang Y, Liang C, Zhao P (2017) Comparison of hydrodynamic parameters for predicting soil and water loss on simulation landslide deposit slope in Wenchuan earthquake area, China. Environ Earth Sci 76(4):167CrossRefGoogle Scholar
  30. Merritt WS, Letcher RA, Jakeman AJ (2003) A review of erosion and sediment transport models. Environ Model Softw 18(8):761–799CrossRefGoogle Scholar
  31. Movahedi A, Delavari A, Farahi M (2015) Designing Manhole in water transmission lines using Flow3D numerical model. Civ Eng J 1(1):19–30CrossRefGoogle Scholar
  32. Movahedi A, Kavianpour M, Aminoroayaie Yamini O (2017) Experimental and numerical analysis of the scour profile downstream of flip bucket with change in bed material size. ISH J Hydraul Eng 1–15.
  33. Okyay E (1973) Die Schulmusikerziehung in der Türkei; Ihre geschichtliche Entwicklung und ihr heutiger Zustand. Mitteilungen der Deutschen Gesellschaft für Musik des Orients 12:74Google Scholar
  34. Pagliara S, Hager WH, Minor HE (2004) Plunge pool scour in prototype and laboratory. In: Proceedings of international conference on hydraulics of dams and river structures, Balkema, Lisse, The Netherlands, pp 165–172Google Scholar
  35. Parsaie A, Haghiabi AH, Moradinejad A (2015) CFD modeling of flow pattern in spillway’s approach channel. Sustain Water Resour Manag 1(3):245–251CrossRefGoogle Scholar
  36. Rajaratnam N (1982) Erosion by submerged circular jets. J Hydraul Div 108(2):262–267Google Scholar
  37. Rouse H (1940) Criteria for similarity in the transportation of sediment. Univ Iowa Stud Eng 20:33–49Google Scholar
  38. Sarhadi A, Jabbari E (2017) Investigating effect of different parameters of the submerged vanes on the lateral intake discharge located in the 180 degree bend using the numerical model. Civ Eng J 3(11):1176–1187CrossRefGoogle Scholar
  39. Schoklitsch A (1932) Scour downstream of falling jet. Water 25(24):341–343Google Scholar
  40. Shamohamadi B, Mehboudi A (2016) Analyzing parameters influencing scour bed in confluence channels using Flow3D numerical model. Civ Eng J 2(10):529–537Google Scholar
  41. Veronese A (1937) Erosion of a bed downstream from an outlet. Colorado A & M College, Fort CollinsGoogle Scholar
  42. Westrich B, Kobus H (1973) Erosion of a uniform sand bed by continuous and pulsating jets. In: Proceedings of the 15th IAHR Congress, Istanbul (International Association for Hydraulic Research, 1973), vol 1, p 91Google Scholar
  43. Whittaker J, Schleiss A (1984) Scour Related to Energy Dissipators for High Head Structures, Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, No73 Zürich: VAW, ETHGoogle Scholar
  44. Yamini OA, Kavianpour MR, Mousavi SH (2017) Experimental investigation of parameters affecting the stability of articulated concrete block mattress under wave attack. Appl Ocean Res 64:184–202CrossRefGoogle Scholar
  45. Zhao Zhihe, Fernando HJS (2007) Numerical simulation of scour around pipelines using an Euler–Euler coupled two-phase model. Environ Fluid Mech 7(2):121–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringK.N. Toosi University of TechnologyTehranIran

Personalised recommendations