Advertisement

3D mapping as a tool for the planning of preservation measures on sculptures made of natural stone

  • Carolin PfeufferEmail author
  • Max Rahrig
  • Rolf Snethlage
  • Rainer Drewello
Thematic Issue
Part of the following topical collections:
  1. Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability

Abstract

The article deals with the comparison between 2D and 3D evaluation of surface areas of sculptures. The objects chosen for investigation were Apollo (Carrara Marble, Potsdam Sanssouci), Flora (Laas Marble, Castle and Park Nymphenburg Munich) and Juno (Cotta Sandstone, Baroque Garden Großsedlitz/Dresden). Photographs showing the sculptures from all sides were used for calculating 2D surface areas with AutoCAD 2018 software. 3D models were generated with T-Scan 2 (Steinbichler Company), and 3D surface areas were evaluated with CAD software Geomagic Studio. The results show that 3D total surface area determinations of virtual 3D models are much more precise than 2D determinations on photographs. The values of the total surface area differ significantly. In case of Apollo 2D measurement captures only 66% of the real total surface. For measuring surface roughness, standardized Bosch sandpapers with P classification were used. Microphotographs of marble and sandstone surfaces show the development and the general optical appearance of increasing roughness. As expected, 2D calculation gives smaller values than 3D calculation also in case of surface roughness. In case of Apollo the P400 roughness area calculated with 2D measurement yields only 26% of the real area calculated with 3D. The accuracy of the surface 2D measurement clearly depends on the complexity of the sculpture because undercuts cannot be captured on photographs. It is shown that accurate information about the distribution of damage phenomena helps to improve planning conservation measures.

Keywords

3D laser scanning Marble Surface roughness Calculation of 3D surface areas Cultural heritage 

Notes

Acknowledgements

First of all, we would like to thank “Deutsche Bundesstifung Umwelt DBU” (German Federal Environmental Foundation) for financing and thus enabling the project, in particular Dr. Paul Bellendorf for his great support and advice (Project Number 33 162/45). We would like to thank Mrs Kathrin Lange and Dr. Saskia Hüneke, Stiftung Preussische Schlösser und Gärten Berlin-Brandenburg SPGS, Collection of sculptures in the depot of Potsdam. We would also like to thank Mrs Daniela Pietsch, City of Baiersdorf: Jewish cemetry and Mr Klaus Häfner, Bayerische Verwaltung der Staatlichen Schlösser, Gärten und Seen: Garden sculptures Schloss Nymphenburg, München. Likewise, we would like to thank Mrs Tanja Müller, Staatliche Schlösser, Burgen und Gärten Sachsen: Barockgarten Großsedlitz und Großer Garten Dresden, Sächsisches Immobilien- und Baumanagement. Without the help of these institutions, which provided us with their objects for investigation, this project would not have been possible. Furthermore, we would like to give sincere thanks to the members of the advisory board who shared experience and ideas to promote the project: Dr Michael Auras, Prof. Dr. Christoph Herm, Dr. Eberhard Wendler, Dipl. Chem. Martin Mach, Prof. Dr. Siegfried Siegesmund, Dr. Eberhard Wendler. We would like to send a very special thank to Mr Dipl. Phys. Wolfram Köhler and Mrs Köhler, Laboratory Köhler in Potsdam, for providing valuable information about the investigated sculptures.

References

  1. Ansel J, Gerling C, Hofmeister S, Schick S (2016) Zwei Heiligenfiguren aus der katholichen Marienkirche in Bad Mergentheim – ein außergewöhnliches Restaurierungsprojekt und der Testlauf für eine 3-D-Dokumentation In: Denkmalpflege in Baden-Würtemberg – Nachrichtenblatt der Landesdenkmalpflege, 3/2016, Jahrgang 2016, S.157–163Google Scholar
  2. Beckett N, Schick B, Findlater K (2006) Imaging historical architectural sites for conservation. In: MacDonald L (ed) Digital Heritage. Applying digital imaging to cultural heritage. Butterworth & Heinemann, Oxford. VITRA Vericidal Imaging of Transmissive and Reflective Artefacts. EU 5th Framework Programme (FP5-IST-2000-28008), pp 377–393Google Scholar
  3. Damjanovic S (2013) Sehen, fühlen, Messen. Erprobung der Profilemssmethode zur Einschätzung der Kantenabwitterung und der Beurteilung von Oberflächenrauheiten mit Hilfe von Sandpapieren sowie die messtechnische Ermittlung von Rauheitskenngrößen mit Hilfe des Traceit Systems an Carrara Marmorproben. Bachelor Thesis, Studiengang Restaurierung FH PotsdamGoogle Scholar
  4. Eckstein G, Dendler M (1998) Photogrammetrische Datenerfassung und CAD-gestützte Auswertung der Bau- und Schadensbefunde an den Fassaden der Frauenkirche in Esslingen In: Snethlage R (ed) Jahresberichte Steinzerfall – Steinkonservierung, Fraunhofer IRB Verlag Stuttgart, Band 6, S. 309–323Google Scholar
  5. Grimm W-D, Völkel J (1983) Rauhigkeitsmessung zu Kennzeichnung der Natursteinverwitterung. Zeitschrift der Deutschen Geologischen Gesellschaft 34:387–411Google Scholar
  6. Horn F (2006) Die virtuelle Retusche - Rekonstruktion verlorener Farbschichten am 3D Modell In: Xi’an. Kaiserliche Macht im Jenseits, Kunst- und Ausstellungshalle der Bundesrepublik Deutschland Bonn. 21. April bis 23. Juli 2006, S. 180–183Google Scholar
  7. Köhler W (2018) 3D-Rauheitsmessungen für das Monitoring von Natursteinoberflächen In: Drewello R (ed) Risikoziffer. Umweltschäden an Marmor- und Sandsteinskulpturen erfassen und objektiv bewerten. Abschlussbericht DBU Forschungsprojekt Nr. 33162/01-45. Bamberg University Press (in press) Google Scholar
  8. Rahrig M (2017): Wohin mit all den Scans? – Über die dauerhafte Archivierung von 3D-Daten bedeutender Kulturgüter am Beispiel des Bamberger Kaisergrabs In: Franz B, Vinken G (Hrsg.): Das Digitale und die Denkmalpflege: Bestandserfassung – Denkmalvermittlung – Datenarchivierung – Rekonstruktion verlorener Objekte, Heidelberg: arthistoricum.net, 2017 (Veröffentlichungen des Arbeitskreises Theorie und Lehre der Denkmalpflege e.V., Band 26), S. 130–139Google Scholar
  9. Rahrig M, Luib A (2017) Sri Dalada Maligawa – 3D-Scanning and Documentation of the Temple of the Sacred Tooth Relic at Kandy, Sri Lanka, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2/W2, 229–236Google Scholar
  10. Simon S, Snethlage R (1993) The first stages of marble weathering, preliminary results after short term exposure of nine month. In: Proceedings of the international UNESCO RILEM congress on the conservation of stone and other materials, 29.06–01.07.1993, Paris, J. Thiel, ed., pp 51–58Google Scholar
  11. Stylianides E, Georgopoulos A, Remondino F (2016) Basics of image-based modelling techniques in cultural heritage 3D recording. In: Stylianidis E, Remondino F (eds) 3D Recording, Documentation and Management of Cultural Heritage, S. 253–304Google Scholar
  12. True M (2003) Changing approaches to conservation. In: Burnett Grossmann JB, Podany J, True M (eds) History of Restoratin of Ancient Ston Sculptures. Papers of a Symposium 2001, J P Getty Museum Los Angeles, pp 1–12Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Heritage Conservation Studies and Technologies – KDWTUniversity of BambergBambergGermany

Personalised recommendations