Assessment of radiation exposure to human and non-human biota due to natural radionuclides in terrestrial environment of Belgrade, the capital of Serbia

  • Jelena Petrović
  • Milan Đorđević
  • Ranko Dragović
  • Boško Gajić
  • Snežana Dragović
Original Article


The main focus of this study was to assess radiation exposure to human and non-human biota due to natural radionuclides in soil of the Serbian capital. For the first time, ERICA tool was employed for calculation of gamma dose rates to non-human biota in this area. In analyzed soils, the mean values of 226Ra, 232Th and 40K specific activities were found to be 35, 43 and 490 Bq kg−1, respectively. The distribution of analyzed natural radionuclides in soils was discussed in respect to its statistically significant correlations with sand, silt, clay, carbonates, cation exchange capacity and pH value. The annual outdoor effective dose rates to the population varied from 48 to 98 μSv, and the total dose rates to terrestrial biota, calculated by ERICA tool, varied from 9.84 × 10−2 μGy h−1 (for tree) to 5.54 × 10+0 μGy h−1 (for lichen and bryophytes). The results obtained could serve as a baseline data for the assessment of possible anthropogenic enhancement of the total dose rate to human and non-human biota of the study area.


Natural radionuclides Statistical analysis Gamma dose rates ERICA tool 



This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. III43009).


  1. Abdalhamid S, Salih I, Idriss H (2017) Gamma absorbed radiation dose in Marrah mountain series, western Sudan. Environ Earth Sci 76:672. CrossRefGoogle Scholar
  2. Antovic NM, Svrkota N, Antovic I (2012) Radiological impacts of natural radioactivity from soil in Montenegro. Radiat Prot Dosim 148:310–317CrossRefGoogle Scholar
  3. Baykara O, Doğru M (2009) Determination of terrestrial gamma, 238U, 232Th and 40K in soil along fracture zones. Radiat Meas 44:116–121CrossRefGoogle Scholar
  4. Belivermis M, Kiliç Ö, Çotuk Y, Topcuoǧlu S (2010) The effects of physicochemical properties on gamma emitting natural radionuclide levels in the soil profile of Istanbul. Environ Monit Assess 163:15–26CrossRefGoogle Scholar
  5. Beresford NA, Barnett CL, Brown JE et al (2008a) Inter-comparison of models to estimate radionuclide activity concentrations in non-human biota. Radiat Environ Biophys 47:491–514CrossRefGoogle Scholar
  6. Beresford NA, Barnett CL, Howard BJ, Scott WA, Brown JE, Copplestone D (2008b) Derivation of transfer parameters for use within the ERICA Tool and the default concentration ratios for terrestrial biota. J Environ Radioact 99:1393–1407CrossRefGoogle Scholar
  7. Blanco Rodríguez P, Vera Tomé F, Lozano JC, Pérez-Fernández MA (2008) Influence of soil texture on the distribution and availability of 238U, 230Th, and 226Ra in soils. J Environ Radioact 99:1247–1254CrossRefGoogle Scholar
  8. Boggs S Jr, Livermore D, Seltz MG (1985) Humic substances in natural waters and their complexation with trace metals and radionuclides: a review. ANL-84-78, Argonne National Laboratory, Argonne, IllinoisGoogle Scholar
  9. Botwe BO, Schirone A, Delbono I, Barsanti M, Delfanti R, Kelderman P, Nyarko E, Lens PNL (2017) Radioactivity concentrations and their radiological significance in sediments of the Tema Harbour (Greater Accra, Ghana). J Radiat Res Appl Sci 10:63–71CrossRefGoogle Scholar
  10. Bouhila G, Azbouche A, Benrachi F, Belamri M (2017) Natural radioactivity levels and evaluation of radiological hazards from Beni Haroun dam sediment samples, northeast Algeria. Environ Earth Sci 76:710. CrossRefGoogle Scholar
  11. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Pröhl G, Ulanovsky A (2008) The ERICA Tool. J Environ Radioact 99:1371–1383CrossRefGoogle Scholar
  12. Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Hosseini A (2016) A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals. J Environ Radioact 153:141–148CrossRefGoogle Scholar
  13. Caridi F, D’Agostino M, Marguccio S, Belvedere A, Belmusto G, Marcianò G, Sabatino G, Mottese A (2016) Radioactivity, granulometric and elemental analysis of river sediments samples from the coast of Calabria, south of Italy. Eur Phys J Plus 131:136. CrossRefGoogle Scholar
  14. Černe M, Smodiš B, Štrok M, Lj Benedik (2012) Radiation impact assessment on wildlife from an uranium mine area. Nucl Eng Des 246:203–209CrossRefGoogle Scholar
  15. Chandrasekaran A, Rajalakshmi A, Ravisankar R, Vijayagopal P, Venkatraman B (2015) Measurements of natural gamma radiations and effects of physico-chemical properties in soils of Yelagiri hills, Tamilnadu India with statistical approach. Proc Earth Planet Sci 11:531–538CrossRefGoogle Scholar
  16. Ćujić M, Dragović S (2017) Assessment of dose rate to terrestrial biota in the area around coal fired power plant applying ERICA tool and RESRAD BIOTA code. J Environ Radioact. Google Scholar
  17. Ćujić M, Dragović S, Đorđević M, Dragović R, Gajić B, Miljanić Š (2015) Radionuclides in the soil around the largest coal-fired power plant in Serbia: radiological hazard, relationship with soil characteristics and spatial distribution. Environ Sci Pollut Res 22:10317–10330CrossRefGoogle Scholar
  18. Doering C, Bollhöfer A (2016) A soil radiological quality guideline value for wildlife-based protection in uranium mine rehabilitation. J Environ Radioact 151:522–529CrossRefGoogle Scholar
  19. Dragović R, Kićović DM (2001) Changes of climate of Belgrade caused by urban and industrial factors. In: Environmental protection of urban and suburban settlements, eco-conference Novi Sad, pp 369–374Google Scholar
  20. Dragović S, Onjia A (2006) Classification of soil samples according to their geographic origin using gamma-ray spectrometry and principal component analysis. J Environ Radioact 89:150–158CrossRefGoogle Scholar
  21. Dragović S, Lj Janković, Onjia A (2006) Assessment of gamma dose rates from terrestrial exposure in Serbia and Montenegro. Radiat Prot Dosim 121:297–302CrossRefGoogle Scholar
  22. Dragović S, Gajić B, Dragović R, Janković-Mandić LJ, Slavković-Beškoski L, Mihailović N, Momčilović M, Ćujić M (2012a) Edaphic factors affecting the vertical distribution of radionuclides in the different soil types of Belgrade, Serbia. J Environ Monit 14:127–137CrossRefGoogle Scholar
  23. Dragović S, Janković-Mandić LJ, Dragović R, Đorđević M (2012b) Natural and man-made radionuclides in soil as sources of radiation exposure. In: Balenovic D, Stimac E (eds) Radiation exposure: sources, impacts and reduction strategies. Nova Science Publishers Inc., New York, pp 1–42Google Scholar
  24. Dragović S, Janković-Mandić LJ, Dragović R, Đordević M, Đokić M, Kovačević J (2014) Lithogenic radionuclides in surface soils of Serbia: Spatial distribution and relation to geological formations. J Geochem Explor 142:4–10CrossRefGoogle Scholar
  25. Đurdić S, Stojković S, Šabić D (2011) Nature conservation in urban conditions: a case study from Belgrade, Serbia. Maejo Int J Sci Technol 5:129–145Google Scholar
  26. Elejalde C, Herranz M, Romero F, Legarda F (1996) Correlations between soil parameters and radionuclide contents in samples from Biscay (Spain). Water Air Soil Pollut 89:23–31CrossRefGoogle Scholar
  27. ERICA (2007) The ERICA assessment tool, version 1.2.1. Accessed 23 Oct 2017
  28. Federal Geological Survey (1970) Geologic map of SFRY, 1:500000. Belgrade, SerbiaGoogle Scholar
  29. Guo P, Duan T, Song X, Xu J, Chen H (2008) Effects of soil pH and organic matter on distribution of thorium fractions in soil contaminated by rare-earth industries. Talanta 77:624–627CrossRefGoogle Scholar
  30. Hosseini A, Brown JE, Szymanska M, Ciupek K (2011) Application of an environmental impact assessment methodology for areas exhibiting enhanced levels of NORM in Norway and Poland. Radioprotection 46:S759–S764CrossRefGoogle Scholar
  31. Huy NQ, Hien PD, Luyen TV, Hoang DV, Hiep HT, Quang NH, Long NQ, Nhan DD, Binh NT, Hai PS, Ngo NT (2012) Natural radioactivity and external dose assessment of surface soils in Vietnam. Radiat Prot Dosim 151:522–531CrossRefGoogle Scholar
  32. IAEA (2004) Soil sampling for environmental contaminants. IAEA-TECDOC-1415. International Atomic Energy Agency, ViennaGoogle Scholar
  33. IAEA (2012) Environmental modelling for radiation safety (EMRAS)—a summary report of the results of the EMRAS programme (2003–2007). IAEA-TECDOC-1678. International Atomic Energy Agency, ViennaGoogle Scholar
  34. IAEA (2014) Handbook of parameter values for the prediction of radionuclide transfer to wildlife. Technical reports series no. 479. International Atomic Energy Agency, ViennaGoogle Scholar
  35. ICRP (2007) The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann. ICRP 37. OxfordGoogle Scholar
  36. ISO 10390 (2005) Soil quality-determination of pH. International Standard Organization, GenevaGoogle Scholar
  37. ISO 10693 (1995) Soil quality-determination of carbonate content-volumetric method. International Standard Organization, GenevaGoogle Scholar
  38. ISO 11265 (1994) Soil quality-determination of the specific electrical conductivity. International Standard Organization, GenevaGoogle Scholar
  39. Janković Mandić LJ, Dragović S (2010) Assessment of terrestrial gamma exposure to the population of Belgrade (Serbia). Radiat Prot Dosimetry 140:369–377CrossRefGoogle Scholar
  40. Janković Mandić LJ, Dragović R, Dragović S (2010) Distribution of lithogenic radionuclides in soils of the Belgrade region (Serbia). J Geochem Explor 105:43–49CrossRefGoogle Scholar
  41. Janković Mandić LJ, Dragović R, Pisanjuk S, Dragović S (2016) The natural radionuclides in soils of Subotica (Serbia): distribution and corresponding gamma dose rates. RAD Conf Proc 1:71–74Google Scholar
  42. Janković-Mandić LJ, Dragović R, Đordjević M, Đolić M, Onjia A, Dragović S, Bačić G (2014) Spatial variability of 137Cs in the soil of Belgrade region (Serbia). Hem Ind 68:449–455CrossRefGoogle Scholar
  43. Kappen H (1929) Die Bodenaziditaat. Springer, BerlinCrossRefGoogle Scholar
  44. Komatina M, Komatina SM (1999) In: Chilton J (ed) Groundwater in the urban environment. Selected city profiles, Balkema, Rotterdam, pp 317–322Google Scholar
  45. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World Map of the Köppen–Geiger climate classification update. Meteorol Z 15:259–263CrossRefGoogle Scholar
  46. Kumar A, Rout S, Ghosh M, Singhal RK, Ravi PM (2013) Thermodynamic parameters of U(VI) sorption onto soils in aquatic systems. SpringerPlus 2(530):1–7Google Scholar
  47. Larsson CM (2008) An overview of the ERICA Integrated Approach to the assessment and management of environmental risks from ionising contaminants. J Environ Radioact 99:1364–1370CrossRefGoogle Scholar
  48. Li J, Liu S, Zhang Y, Chen L, Yan Y, Cheng W, Lou H, Zhang Y (2015) Pre-assessment of dose rates of 134Cs, 137Cs, and 60Co for marine biota from discharge of Haiyang Nuclear Power Plant, China. J Environ Radioact 147:8–13CrossRefGoogle Scholar
  49. Mazeika J, Marciulioniene D, Nedveckaite T, Jefanova O (2016) The assessment of ionising radiation impact on the cooling pond freshwater ecosystem non-human biota from the Ignalina NPP operation beginning to shut down and initial decommissioning. J Environ Radioact 151:28–37CrossRefGoogle Scholar
  50. Milenkovic B, Stajic JM, Lj Gulan, Zeremski T, Nikezic D (2015) Radioactivity levels and heavy metals in the urban soil of Central Serbia. Environ Sci Pollut Res 22:16732–16741CrossRefGoogle Scholar
  51. Navas A, Soto J, Machín J (2002) 238U, 226Ra, 210Pb, 232Th and 40K activities in soil profiles of the Flysch sector (Central Spanish Pyrenees). Appl Radiat Isot 57:579–589CrossRefGoogle Scholar
  52. Navas A, Gaspar L, López-Vicente M, Machín J (2011) Spatial distribution of natural and artificial radionuclides at the catchment scale (South Central Pyrenees). Radiat Meas 46:261–269CrossRefGoogle Scholar
  53. Nedveckaite T, Filistovic V, Marciulioniene D, Prokoptchuk N, Plukiene R, Gudelis A, Remeikis V, Yankovich T, Beresford NA (2011) Background and anthropogenic radionuclide derived dose rates to freshwater ecosystem—nuclear power plant cooling pond—reference organisms. J Environ Radioact 102:788–795CrossRefGoogle Scholar
  54. ORTEC (2001) Gamma vision 32, gamma-ray spectrum analysis and MCA emulation. ORTEC, Oak Ridge, version 5.3Google Scholar
  55. Oughton DH, Agüero A, Avila R, Brown JE, Copplestone D, Gilek M (2008) Addressing uncertainties in the ERICA Integrated Approach. J Environ Radioact 99:1384–1392CrossRefGoogle Scholar
  56. Oughton DH, Strømman G, Salbu B (2013) Ecological risk assessment of Central Asian mining sites: application of the ERICA assessment tool. J Environ Radioact 123:90–98CrossRefGoogle Scholar
  57. Petrović J, Ćujić M, Đorđević M, Dragović R, Gajić B, Miljanić Š, Dragović S (2013) Spatial distribution and vertical migration of 137Cs in soils of Belgrade (Serbia) 25 years after the Chernobyl accident. Environ Sci Process Impacts 15:1279–1289CrossRefGoogle Scholar
  58. Rowell DL (1997) Bodenkunde. Untersuchungsmethoden und ihre Anwendungen. Springer, BerlinGoogle Scholar
  59. Šegota T (1988) Climatology for geographers. Školska knjiga, Zagreb (in Croatian) Google Scholar
  60. Simakov VN (1957) Application of phenylanthranilic acid in determining humus, the method of Tyurin. Пoчвoвeдeниe 8:72–73Google Scholar
  61. Sotiropoulou M, Florou H, Manolopoulou M (2016) Radioactivity measurements and dose rate calculations using ERICA tool in the terrestrial environment of Greece. Environ Sci Pollut Res 23:10872–10882CrossRefGoogle Scholar
  62. SPSS (2007) Statistical package for the social sciences 16.0. Chicago, IllinoisGoogle Scholar
  63. Taskin H, Karavus M, Ay P, Topuzoglu A, Hidiroglu S, Karahan G (2009) Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. J Environ Radioact 100:49–53CrossRefGoogle Scholar
  64. Tomić ZP, Djordjević AR, Rajković MB, Vukašinović I, Nikolić NS, Pavlović V, Lačnjevac ČM (2011) Impact of mineral composition on the distribution of natural radionuclides in rigosol-anthrosol. Sens Transducers J 125:115–130Google Scholar
  65. UNSCEAR (2000) Sources and effects of ionizing radiation. UNSCEAR 2000 report to the general assembly with scientific annexes, vol 1: sources. United Nation, New YorkGoogle Scholar
  66. UNSCEAR (2010) Sources and effects of ionizing radiation. UNSCEAR 2008 report to the general assembly with scientific annexes, vol I. United Nation, New YorkGoogle Scholar
  67. UNSCEAR (2011) Sources and effects of ionizing radiation. UNSCEAR 2008 report to the general assembly with scientific annexes, vol II scientific annexes C, D and E. United Nation, New YorkGoogle Scholar
  68. Vives i Batlle J, Balonov M, Beaugelin-Seiller K et al (2007) Inter-comparison of absorbed dose rates for non-human biota. Radiat Environ Biophys 46:349–373CrossRefGoogle Scholar
  69. Vives i Batlle J, Beaugelin-Seiller K, Beresford NA et al (2011) The estimation of absorbed dose rates for non-human biota: an extended intercomparison. Radiat Environ Biophys 50:231–251CrossRefGoogle Scholar
  70. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  71. Wood MD, Marshall WA, Beresford NA, Jones SR, Howard BJ, Copplestone D, Leah RT (2008) Application of the ERICA Integrated Approach to the Drigg coastal sand dunes. J Environ Radioact 99:1484–1495CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jelena Petrović
    • 1
  • Milan Đorđević
    • 2
  • Ranko Dragović
    • 2
  • Boško Gajić
    • 3
  • Snežana Dragović
    • 1
  1. 1.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Sciences and Mathematics, Department of GeographyUniversity of NišNišSerbia
  3. 3.Institute of Land Management, Faculty of AgricultureUniversity of BelgradeBelgradeSerbia

Personalised recommendations