Characterization of flow and transport dynamics in karst aquifers by analyzing tracer test results in conduits and recharge areas (the Egino Massif, Basque Country, Spain): environmental and management implications

  • Tomás Morales
  • Jesus A. Uriarte
  • Bárbara Angulo
  • Martín Olazar
  • Jose M. Arandes
  • Iñaki Antigüedad
Original Article
  • 60 Downloads

Abstract

Karst aquifers contribute to supplying drinking water to almost a quarter of the world´s population. Their complex dynamics requires specific approaches aimed at recognizing their singularities, analyzing its vulnerability, and ensuring water resources quality. In this paper, the results of processing and modeling five breakthrough tracer curves obtained under different hydrodynamic conditions in the main conduit of Egino karst aquifer (Basque Country, Spain) are analyzed together with those involving pressure injections of the tracer in the saturated zone of the karst massif recharge area. In the conduit, transport is immediate and highly efficient (recovery rates above 84% and dispersion coefficients from 15.04 to 84.35 m2/min); tracer retentions increase as flow rates decrease and no significant contributions to its surroundings are observed. In contrast, tracer transport from the massif recharge area is more complex: after injection at a pressure of 1 MPa, most tracer remains in the surrounding of the injection borehole, retained in a saturated medium of low effective fracture porosity (ϕ f  = 1.02 × 10−4, assuming a radial divergent flow model); subsequently, the main tracer mobilization to the spring was registered with the first rains, with 0.088 m/min mean velocity and high concentrations per unit mass being injected (C p /M0 = 0.03 mg/L/kg), which is evidence that the tracer reaches soon the karst conduit network. In any case, a decreasing tracer presence is registered at the injection zone during a hydrological cycle. In both cases, the observed non-linearity of transport processes should be considered in the development of vulnerability approaches, modeling efforts, and mapping. Furthermore, in the case of karst massif recharge areas, as the presence of pollutants may have a significant impact on the springs and persist over time, their management and protection needs must be revised in each specific site. Simultaneously, quality-monitoring programs at the springs must be adapted to the aquifers recognized dynamics.

Keywords

Tracer test Karst dynamic Solute transport Water management 

Notes

Acknowledgements

This study has been carried out by the UPV/EHU Research Group IT-1029/16 supported by the Government of the Basque Country. The authors also thank the Department of Environment of the Basque Government (IHOBE) and the University of the Basque Country for their financial support.

References

  1. Andreo B, Ravbar N, Vías JM (2009) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17:749–758.  https://doi.org/10.1007/s10040-008-0391-1 CrossRefGoogle Scholar
  2. Angulo B, Morales T, Uriarte JA, Antigüedad I (2011) Hydraulic conductivity characterization of a karst recharge area using water injection tests and electrical resistivity logging. Eng Geol 117:90–96.  https://doi.org/10.1016/j.enggeo.2010.10.008 CrossRefGoogle Scholar
  3. Aral H, Vecchio-Sadus A (2008) Toxicity of lithium to humans and the environment—a literature review. Ecotoxicol Environ Saf 70:349–356.  https://doi.org/10.1016/j.ecoenv.2008.02.026 CrossRefGoogle Scholar
  4. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160.  https://doi.org/10.1007/s10040-004-0402-9 CrossRefGoogle Scholar
  5. Benischke R, Goldscheider N, Smart C (2007) Tracer techniques. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. Taylor and Francis, London, pp 147–170Google Scholar
  6. Birk S, Geyer T, Liedl R, Sauter M (2005) Process-based interpretation of tracer tests in carbonate aquifers. Ground Water 43:381–388.  https://doi.org/10.1111/j.1745-6584.2005.0033.x CrossRefGoogle Scholar
  7. Bottrell SH, Atkinson TC (1992) Tracer study of flow and storage in the unsaturated zone of a karstic limestone aquifer. In: Hötzl H, Werner A (eds) Tracer hydrology. Balkema, Rotterdam, pp 207–211Google Scholar
  8. Brouyère S (2004) A quantitative point of view of the concept of vulnerability. In: Zwahlen F (ed) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, COST620 final report. Office for Official Publications of the European Communities, Luxembourg, pp 10–15Google Scholar
  9. Castany G, Margat J (1977) Dictionnaire français d’hydrogéologie. BRGM, OrléansGoogle Scholar
  10. Čenčur Curk B, Trček B, Veselič M (2001) The study of solute transport with natural and artificial tracers at experimental field site Sinji Vrh. RMZ Mater Geoenviron 48:401–413Google Scholar
  11. Cerdà A, Schnabel S, Ceballos A, Gomez-Amelia D (1998) Soil hydrological response under simulated rainfall in the Dehesa Land System (Extremadura, SW Spain) under drought conditions. Earth Surf Process Landf 23:15–209CrossRefGoogle Scholar
  12. Chen JS, Chen CS, Chen CY (2007) Analysis of solute transport in a divergent flow tracer test with scale-dependent dispersion. Hydrol Process 21:2526–2536.  https://doi.org/10.1002/hyp.6496 CrossRefGoogle Scholar
  13. Daly D, Dassargues A, Drew D, Dunne S, Goldscheider N, Neale S, Popescu I, Zwahlen F (2002) Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 10:340–345.  https://doi.org/10.1007/s10040-001-0185-1 CrossRefGoogle Scholar
  14. Dewaide L, Bonniver I, Rochez G, Hallet V (2016) Solute transport in heterogeneous karst systems: dimensioning and estimation of the transport parameters via multi-sampling tracer-tests modelling using the OTIS (one-dimensional transport with inflow and storage) program. J Hydrol 534:567–578.  https://doi.org/10.1016/j.jhydrol.2016.01.049 CrossRefGoogle Scholar
  15. Fernández-Mendiola PA, García-Mondéjar J (1991) Depositional history of Aptian–Albian carbonate platforms: Aitzgorri Massif, northern Spain. Cretac Res 12:293–320.  https://doi.org/10.1016/0195-6671(91)90038-E CrossRefGoogle Scholar
  16. Field MS (2002) Efficient hydrologic tracer-test design for tracer-mass estimation and sample-collection frequency, 1, method development. Environ Geol 42:827–838.  https://doi.org/10.1007/s00254-002-0591-2 CrossRefGoogle Scholar
  17. Field MS, Feike JL (2014) Combined physical and chemical nonequilibrium transport model for solution conduits. J Contam Hydrol 157:37–46.  https://doi.org/10.1016/j.jconhyd.2013.11.001 CrossRefGoogle Scholar
  18. Field MS, Pinsky PF (2000) A two-region nonequilibrium model for solute transport in solution conduits in karstic aquifers. J Contam Hydrol 44:329–351.  https://doi.org/10.1016/S0169-7722(00)00099-1 CrossRefGoogle Scholar
  19. Flynn RM, Sinreich M (2010) Characterisation of virus transport and attenuation in epikarst using short pulse and prolonged injection multi-tracer testing. Water Res 44:1138–1149.  https://doi.org/10.1016/j.watres.2009.11.032 CrossRefGoogle Scholar
  20. Ford DC, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, ChichesterCrossRefGoogle Scholar
  21. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood CliffsGoogle Scholar
  22. Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974.  https://doi.org/10.1029/92WR00607 CrossRefGoogle Scholar
  23. Geyer T, Birk S, Licha T, Liedl R, Sauter M (2007) Multitracer test approach to characterize reactive transport in karst aquifers. Ground Water 45:36–45.  https://doi.org/10.1111/j.1745-6584.2006.00261.x CrossRefGoogle Scholar
  24. Goldscheider N, Drew D (2007) Methods in karst hydrogeology. Taylor & Francis, LondonGoogle Scholar
  25. Goldscheider N, Meiman J, Pronk M, Smart C (2008) Tracer tests in karst hydrogeology and speleology. Int J Speleol 37:27–40.  https://doi.org/10.5038/1827-806X.37.1.3 CrossRefGoogle Scholar
  26. Göppert N, Goldscheider N (2008) Solute and colloid transport in karst conduits under low- and high-flow conditions. Ground Water 46:61–68.  https://doi.org/10.1111/j.1745-6584.2007.00373.x Google Scholar
  27. Hartmann S, Odling NE, West LJ (2007) A multi-directional tracer test in the fractured Chalk aquifer of E. Yorkshire, UK. J Contam Hydrol 94:315–331.  https://doi.org/10.1016/j.jconhyd.2007.07.009 CrossRefGoogle Scholar
  28. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242.  https://doi.org/10.1002/2013RG000443 CrossRefGoogle Scholar
  29. Hauns M, Jeannin PY, Atteia O (2001) Dispersion, retardation and scale effect in tracer breakthrough curves in karst conduits. J Hydrol 241:177–193.  https://doi.org/10.1016/S0022-1694(00)00366-8 CrossRefGoogle Scholar
  30. Huntoon PW (1995) Is it appropriate to apply porous media groundwater circulation models to karstic aquifers. In: El-Kadi AI (ed) Groundwater models for resources analysis and management. CRC Lewis Publishers, Boca Raton, pp 339–358Google Scholar
  31. Huntoon PW (1999) Karstic permeability: organized flow pathways created by circulation. In: Palmer AN, Palmer MV, Sasowsky ID (eds) Karst modeling, karst waters institute special publication, vol 5. pp 79–81Google Scholar
  32. Ingham J, Dunn IJ, Heinzle E, Přenosil JE (2008) Chemical engineering dynamics: modelling with PC simulation. Wiley, New YorkGoogle Scholar
  33. Jobson HE (1997) Predicting travel time and dispersion in rivers and streams. J Hydraul Eng 123:971–978CrossRefGoogle Scholar
  34. Käss W (1998) Tracing technique in geohydrology. Balkema, RotterdamGoogle Scholar
  35. Kavouri K, Plagnes V, Tremoulet J, Dörfliger N, Rejiba F, Marchet P (2011) PaPRIKa: a method for estimating karst resource and source vulnerability—application to the Ouysse karst system (southwest France). Hydrogeol J 19:339–353.  https://doi.org/10.1007/s10040-010-0688-8 CrossRefGoogle Scholar
  36. Kogovsek J, Petric M (2014) Solute transport processes in a karst vadose zone characterized by long-term tracer tests (the cave system of Postojnska Jama, Slovenia). J Hydrol 519:1205–1213.  https://doi.org/10.1016/j.jhydrol.2014.08.047 CrossRefGoogle Scholar
  37. Lepiller M, Mondain PH (1986) Les traçages artificiels en hydrogéologie karstique. Hydrogeol 1:33–52Google Scholar
  38. Mangin A (1974) Contribution à l’étude hydrodynamique des aquifères karstiques. Ann Speleol 29:283–332, 29:495–601, 30:21–124Google Scholar
  39. Marín AI, Andreo B, Mudarra M (2015) Vulnerability mapping and protection zoning of karst springs. Validation by multitracer tests. Sci Total Environ 532:435–446.  https://doi.org/10.1016/j.scitotenv.2015.05.029 CrossRefGoogle Scholar
  40. Massei N, Wang HQ, Field MS, Dupont JP, Bakalowicz M, Rodet J (2006) Interpreting tracer breakthrough tailing in a conduit-dominated karst aquifer. Hydrogeol J 14:849–858.  https://doi.org/10.1007/s10040-005-0010-3 CrossRefGoogle Scholar
  41. Molinari J (1976) Perspectives offertes par l’utilisation rationnelle des traceurs naturels et artificiels en hydrogéologie karstique. Commentaires de nombreux exemples récents de multitraçages. Ann Sci Univ Besancon Geol 25:275–306Google Scholar
  42. Morales T, Olazar M, Arandes JM, Zafra P, Antigüedad I, Basauri F (1997) Application of a solute transport model under variable velocity conditions in a conduit flow aquifer: Olalde karst system, Basque Country, Spain. Environ Geol 30:143–151.  https://doi.org/10.1007/s002540050141 CrossRefGoogle Scholar
  43. Morales T, Fernández de Valderrama I, Uriarte JA, Antigüedad I, Olazar M (2007) Predicting travel times and transport characterization in karst conduits by analyzing tracer-breakthrough curves. J Hydrol 334:183–198.  https://doi.org/10.1016/j.jhydrol.2006.10.006 CrossRefGoogle Scholar
  44. Morales T, Uriarte JA, Olazar M, Antigüedad I, Angulo B (2010) Solute transport modelling in karst conduits with slow zones during different hydrologic conditions. J Hydrol 390:182–189.  https://doi.org/10.1016/j.jhydrol.2010.06.041 CrossRefGoogle Scholar
  45. Morales T, Angulo B, Uriarte JA, Olazar M, Arandes JM, Antigüedad I (2017) Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management. J Hydrol 547:269–279.  https://doi.org/10.1016/j.jhydrol.2017.02.009 CrossRefGoogle Scholar
  46. Mudarra M, Andreo B, Barberá JA, Mudry J (2014) Hydrochemical dynamics of TOC and NO3 contents as natural tracers of infiltration in karst aquifers. Environ Earth Sci 71:507–523.  https://doi.org/10.1007/s12665-013-2593-7 CrossRefGoogle Scholar
  47. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313.  https://doi.org/10.1093/comjnl/7.4.308 CrossRefGoogle Scholar
  48. Novakowski KS (1992) The analysis of tracer experiments conducted in divergent radial flow fields. Water Resour Res 28:3215–3225.  https://doi.org/10.1029/92WR01722 CrossRefGoogle Scholar
  49. Öhrström P, Persson M, Albergel J, Zante P, Nasri S, Berndtsson R, Olsson J (2002) Field-scale variation of preferential flow as indicated from dye coverage. J Hydrol 257:164–173CrossRefGoogle Scholar
  50. Perrin J, Pochon A, Jeannin P-Y, Zwahlen F (2004) Vulnerability assessment in karstic areas: validation by field experiments. Environ Geol 46:237–245.  https://doi.org/10.1007/s00254-004-0986-3 CrossRefGoogle Scholar
  51. Peterson EW, Wicks CM (2005) Fluid and solute transport from a conduit to the matrix in a carbonate aquifer system. Math Geol 37:851–867.  https://doi.org/10.1007/s11004-005-9211-5 CrossRefGoogle Scholar
  52. Quinn PM, Parker BL, Cherry JA (2011) Using constant head step test to determine hydraulic apertures in fractured rock. J Contam Hydrol 126:85–99.  https://doi.org/10.1016/j.jconhyd.2011.07.002 CrossRefGoogle Scholar
  53. Ravbar N, Goldscheider N (2007) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsol 36:397–411CrossRefGoogle Scholar
  54. Ries F, Lange J, Schmidt S, Puhlmann H, Sauter M (2015) Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region. Hydrol Earth Syst Sci 19:1439–1456.  https://doi.org/10.5194/hess-19-1439-2015 CrossRefGoogle Scholar
  55. Sauter M (1992) Quantification and forecasting of regional groundwater flow and transport in a karst aquifer (Gallusquelle, Malm, SW Germany), Tüb Geowiss Arb C13. Institut und Museum für Geologie und Paläontologie der Universität Tübingen, TübingenGoogle Scholar
  56. Schiesser WE (1991) The numerical method of lines. In: Integration of partial differential equations. Academic Press, San DiegoGoogle Scholar
  57. Schulze-Makuch D (2005) Longitudinal dispersivity data and implications for scaling behavior. Ground Water 43:443–456.  https://doi.org/10.1111/j.1745-6584.2005.0051.x CrossRefGoogle Scholar
  58. Vías JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14:912–925.  https://doi.org/10.1007/s10040-006-0023-6 CrossRefGoogle Scholar
  59. White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105.  https://doi.org/10.1016/S0013-7952(01)00116-8 CrossRefGoogle Scholar
  60. Zwahlen F (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report COST Action 620. European Commission, BrusselsGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hydrogeology and Environment Group, Science and Technology FacultyUniversity of the Basque Country UPV/EHUBilbaoSpain
  2. 2.Department of Chemical Engineering, Science and Technology FacultyUniversity of the Basque Country UPV/EHUBilbaoSpain

Personalised recommendations