Skip to main content

Advertisement

Log in

An updated review about carbon dioxide and climate change

Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This manuscript will review the essence of the role of CO2 in the Earth’s atmosphere. The logic of CO2 involvement in changing the climate will be investigated from every perspective: reviewing the historical data record, examining in further detail the twentieth-century data record, and evaluating the radiation role of CO2 in the atmosphere—calculating and integrating the Schwarzschild radiation equation with a full complement of CO2 absorption coefficients. A review of the new theory of climate change—due to the Sun’s magnetic field interacting with cosmic rays, is provided. The application of this new theory is applied to climate-change events within the latter part of the Earth’s interglacial period. The application to the Earth’s Ice Ages is not detailed here due to manuscript size constraints, but is referenced for the reader. The results of this review point to the extreme value of CO2 to all life forms, but no role of CO2 in any significant change of the Earth’s climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Beer J, Baumgartner ST et al (1994) Solar variability traced by cosmogenic isotopes. In: Pap JM, Fröhlich C, Hudson HS, Solanki SK (eds) The sun as a variable star: solar and stellar irradiance variances. Cambridge University Press, Cambridge, pp 291–300

    Google Scholar 

  • Caillon N, Severinghaus JP et al (2003) Timing of atmospheric CO2 and Antarctic temperature changes across Termination III. Science 299:1728–1731

    Article  Google Scholar 

  • Charbonneau P (2014) Solar dynamo theory. Annu Rev Astron Astrophys 52:251–290

    Article  Google Scholar 

  • Chilingar GV, Sorokhtin OG, Khilyuk L, Gorfunkel MV (2009) Greenhouse gases and greenhouse effect. Environ Geol 58:1207–1213

    Article  Google Scholar 

  • Emanuel KA (1994) Atmospheric convection. Oxford University Press, New York, p 580

    Google Scholar 

  • Fisher H, Wahlen M, Smith J, Mastroianni D, Deck B (1999) Ice core records around the last three glacial terminations. Science 283:1712–1714

    Article  Google Scholar 

  • Fleming RJ (2014) Explosive baroclinic instability. J Atmos Sci 71:2155–2168

    Article  Google Scholar 

  • Fleming RJ (2015) Analysis of the SDE/Monte Carlo approach in studying nonlinear systems. Lambert Academic Publishing, Saarbrucken, p 136

    Google Scholar 

  • Gimpel J (1961) The cathedral builders. Grove Press, New York

    Google Scholar 

  • Gleissberg W (1965) The eighty-year solar cycle. J Br Astron Assoc 75:227–231

    Google Scholar 

  • Grove JM (1988) The little ice age. Methuen Press, London

    Book  Google Scholar 

  • Hashemi K (2010) http://homeclimateanalysis.blogspot.com

  • Houghton GH (1985) Physical meteorology. MIT Press, Cambridge

    Google Scholar 

  • Hoyt DV, Schatten KH (1998) Group sunspot numbers: a new solar activity reconstruction. Part 1. Sol Phys 179:189–219

    Article  Google Scholar 

  • Kaufman AJ, Xiao S (2003) High CO2 levels in the Proterozoic atmosphere estimated from analysis of individual microfossils. Nature 425:279–282

    Article  Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75:779–788

    Article  Google Scholar 

  • Landscheidt T (2003) New little ice age instead of global warming. Energy Environ 14:327–350

    Article  Google Scholar 

  • Liou KN (2002) An Introduction to atmospheric radiation. Academic Press, London

    Google Scholar 

  • Lockwood R, Stamper R, Wild MN (1999) A doubling of the sun’s coronal magnetic field during the past 100 years. Nature 399:437–439

    Article  Google Scholar 

  • McCracken KG, Beer J, Steinhilber F (2014) Evidence for planetary forcing of the cosmic ray intensity and solar activity throughout the past 9400 years. Sol Phys. https://doi.org/10.1007/s11207-014-0510-1

    Article  Google Scholar 

  • Monin AS, Sonechkin DM (2005) Climate fluctuations based on observational data: the triple sun cycle and other cycles. Nauka, Moscow, p 191

    Google Scholar 

  • Neftel AH, Oeschger J, Schwander J, Stauffer B, Zumbrunn R (1983) Ice core sample measurements give atmospheric CO2 content during the last 40,000 years. Nature 295:220–223

    Article  Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New York, p 522

    Google Scholar 

  • Plimer I (2009) Heaven and Earth: global warming: the missing science. Quartet Books, Limited, London, p 503

    Google Scholar 

  • Rothman LS et al (2009) The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 110:139–204 (data provided by Pacific Northwest National Laboratory)

    Article  Google Scholar 

  • Schwanz P, Pelle A (2001) Growth under elevated CO2 ameliorates defenses against photo-oxidation stress in Poplar (Populous alba_x tremolo). Environ Exp Bot 45:45–53

    Article  Google Scholar 

  • Sharpe GJ (2008) Are uranus and neptune responsible for solar grand minima and solar cycle modulation? First published on line at http://www.landscheidt.info. arxiv.org/ftp/arxiv/papers/1005/1005.5303.pdf

  • Solomon L (2008) The deniers. Richard Vigilante Books, 239 pp. Page 77 has figure from S. Akasofu, Dir. of Intl. Arctic Research Center indicating the temperature drop as stated from a Russian source, but the published reference appeared to have the wrong year

  • Sorokhtin OG, Chilingar GV, Khilyuk LF (2007) Global warming and global cooling: evolution of climate on Earth. Elsevier, Amsterdam, p 313

    Google Scholar 

  • Stephens GL (1994) Remote sensing of the lower atmosphere. Oxford University Press, New York, p 523

    Google Scholar 

  • Stuiver MP, Reimer J, Bard E, Beck JW, Burr GS et al (1998) INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:1041–1083

    Article  Google Scholar 

  • Svensmark H, Calder N (2007) The chilling stars: a cosmic view of climate change. Icon Books Ltd, Thriplow, p 268

    Google Scholar 

  • Svensmark H, Friis-Christensen E (1997) Variation of cosmic ray flux and global cloud coverage: a missing link in solar-climate relationships. J Atmos Sol Terr Phys 59:1225–1232

    Article  Google Scholar 

  • Thompson PD (1987) Large-scale dynamic response to differential heating: statistical equilibrium states and amplitude vacillation. J Atmos Sci 44:1237–1248

    Article  Google Scholar 

  • Usoskin I, Solanki S, Kovaltsov G (2007) Grand minima and maxima of solar activity: new observational constraints. Astron Astrophys 471:301–309

    Article  Google Scholar 

  • Webster P, Keller JL (1975) Atmospheric variations: vacillation and index cycles. J Atmos Sci 32:1283–1300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex J. Fleming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleming, R.J. An updated review about carbon dioxide and climate change. Environ Earth Sci 77, 262 (2018). https://doi.org/10.1007/s12665-018-7438-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7438-y

Keywords

Navigation