Weathering assessment in the Achala Batholith of the Sierra de Comechingones, Córdoba, Central Argentina. III: appraising chemical weathering

  • J. O. Martínez
  • V. A. Campodonico
  • S. M. Formica
  • P. J. Depetris
Thematic Issue
Part of the following topical collections:
  1. IV RAGSU -- Advances in Geochemistry of the Surface in Argentina


La Trucha is a small (~ 1.9 km2), mountainous (~ 1300 m a.s.l.) granitic drainage basin, demonstrative of hundreds of second-order basins in the Achala Batholith of the Sierras Pampeanas of Córdoba, Argentina. Dominated by physical weathering and a weathering-limited denudation regime, the coarse- and fine-grained regolith has shown scant geochemical differences with the country rock. Erosion and sediment transport mainly occurs during torrential rain events (austral summer), whereas surface waters classify as dilute (750 < TΣ+ < 375 µeq L−1) or very dilute (375 < TΣ+ < 185 µeq L−1) water types. The dynamics of chemical weathering at La Trucha was approached through the use of major dissolved chemical components, comparing the performance of different methodologies in its assessment: mineral stability diagrams (i.e., chemical equilibria), the RE chemical weathering index, ternary diagrams, and PHREEQC inverse modeling. The latter approach allowed to probe into subtleties of the geochemical processes indicating that, besides the morphological dependency on mineral hydrolysis/dissolution or precipitation, there is a marked seasonal control that promotes or limits the occurrence of geochemical reactions.


Mountainous catchments Low-order stream Weathering signature PHREEQC inverse modeling Weathering-limited regime 



This research was funded by the Universidad Nacional de Córdoba (SECYT) and by Argentina’s Consejo Nacional de Investigaciones Científicas y Técnicas (PIP N° 112-200801-03160 CONICET). The authors wish to acknowledge the personnel of La Domanda inn for their assistance during fieldwork. We thank three anonymous reviewers and the Editor for their constructive comments.


  1. Bland W, Rolls D (1998) Weathering. An introduction to the scientific principles. Arnold, LondonGoogle Scholar
  2. Boeglin JL, Probst JL (1998) Physical and chemical weathering rates and CO2 consumption in a tropical lateritic environment: the upper Niger basin. Chem Geol 148:137–156CrossRefGoogle Scholar
  3. Boeglin JL, Mortatti J, Tardy Y (1997) Erosion Chimique et Mécanique sur le bassin amont du Niger (Guiné, Mali). Bilan Géochimique de l’altération en millieu tropical. C R Acad Sci, Paris 325:185–191Google Scholar
  4. Bonalumi A, Martino RD, Sfragulla J, Baldo EG, Zarco J, Carignano CA, Tauber A, Kraemer P, Escayola M, Cabanillas A, Juri E, Torres B (1998) Hoja geológica 3166-IV, 1:250.000, Villa Dolores. Instituto de Geología y Recursos Minerales, SEGEMAR, Argentina. Bulletin 250Google Scholar
  5. Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geos. Google Scholar
  6. Campodonico VA, Martínez JO, Verdecchia SO, Pasquini AI, Depetris PJ (2014) Weathering assessment in the Achala Batholith of the Sierra de Comechingones, Córdoba, Central Argentina. I: Granite-regolith fractionation. Catena 123:121–134CrossRefGoogle Scholar
  7. Capitanelli RG (1979) Geomorfología. In: Vázquez JB et al (eds) Geografía física de la Provincia de Córdoba. Boldt, CórdobaGoogle Scholar
  8. Carson MA, Kirkby NJ (1972) Hillslope form and processes. Cambridge University Press, CambridgeGoogle Scholar
  9. Dahlquist JA, Alasino PH, Bello C (2014) Devonian F-rich peraluminous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis from the western central region of the Achala batholiths. Miner Pet 108:391–417CrossRefGoogle Scholar
  10. Depetris PJ, Pasquini AI, Lecomte KL (2014) Weathering and the riverine denudation of continents. Springer briefs in earth system sciences. Springer, DordrechtCrossRefGoogle Scholar
  11. Douglas TA (2006) Seasonality of bedrock weathering chemistry and CO2 consumption in a small watershed, the White River, Vermont. Chem Geol 231:236–251CrossRefGoogle Scholar
  12. Eaton AD, Clesceri LS, Greenberg AE (1995) Standard methods for the examination of water and wastewater. A.P.H.A./A.W.W.A./W.E.F, Washington DCGoogle Scholar
  13. Faure G (1998) Principles and applications of geochemistry, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  14. Ferry JM (1992) Regional metamorphism of the Waits River Formation, eastern Vermont; delineation of a new type of giant metamorphic hydrothermal system. J Pet 33:45–94CrossRefGoogle Scholar
  15. Frings P, Clymans W, Fontorbe G, Gray W, Chakrapani G, Conley D, De La Rocha C (2015) Silicate weathering in the Ganges alluvial plain. Earth Planet Sci Lett 427:136–148CrossRefGoogle Scholar
  16. Hamdan J, Burnham CP (1996) The contribution of nutrients from parent material in three deeply weathered soils of Peninsula Malaysia. Geoderma 74:219–233CrossRefGoogle Scholar
  17. Harnois L (1988) The CIW index: a new chemical index of weathering. Sed Geol 55:319–322CrossRefGoogle Scholar
  18. Horton RE (1945) Erosional development of streams and their drainage basins. Hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370CrossRefGoogle Scholar
  19. Isacks BL (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Res 93(B4):3211–3231CrossRefGoogle Scholar
  20. Lecomte KL, Pasquini AI, Depetris PJ (2005) Mineral weathering in a semiarid mountain river: its assessment through PHREEQC inverse modeling. Aquat Geochem 11:173–194CrossRefGoogle Scholar
  21. Lecomte KL, García MG, Fórmica SM, Depetris PJ (2009) Influence of geomorphological variables on mountainous stream water chemistry (Sierras Pampeanas, Córdoba, Argentina). Geomorphology 110:195–202CrossRefGoogle Scholar
  22. Li Z, Tainosho Y, Shiraishi K, Owada M (2003) Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sor Rondane Mountains, East Antarctica. Geochem J 37:145–161CrossRefGoogle Scholar
  23. Lira R, Kirschbaum AM (1990) Geochemical evolution of granites from the Achala Batholith of the Sierras Pampeanas, Argentina. Geol Soc Am Spec Pap 241:67–76Google Scholar
  24. Martínez JO, Campodonico VA, Fórmica SM, Depetris PJ (2016) Weathering assessment in the Achala Batholith of the Sierra de Comechingones, Córdoba, Central Argentina. II: major hydrochemical characteristics and carbon dynamics. Environ Earth Sci 75:554–572CrossRefGoogle Scholar
  25. Meybeck M (2005) Global occurrence of major elements in rivers. In: Drever JL (ed) Surface and ground water, weathering and soils. Elsevier, Amsterdam, pp 207–223Google Scholar
  26. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299(5885):715–717CrossRefGoogle Scholar
  27. Nicolli H, Bundschuh J, Garcia J, Falcón C, Jean J (2010) Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates—evidence from the Chaco-Pampean plain (Argentina). Water Res 44:5589–5604CrossRefGoogle Scholar
  28. Oliva P, Viers J, Dupré B (2003) Chemical weathering in granitic environments. Chem Geol 202:225–256CrossRefGoogle Scholar
  29. Parkhurst DL, Appelo CA (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, Chap. A43Google Scholar
  30. Pasquini AI, Lecomte KL, Depetris PJ (2004) Geoquímica de ríos de montaña en las Sierras Pampeanas: II. El río Los Reartes, Sierra de Comechingones, Provincia de Córdoba Argentina. Rev Asoc Geol Arg 59(1):129–140Google Scholar
  31. Pasquini AI, Lecomte KL, Piovano EL, Depetris PJ (2006) Recent rainfall and runoff variability in central Argentina. Quat Int 158:127–139CrossRefGoogle Scholar
  32. Pasquini AI, Campodonico VA, Rouzaut S, Giampaoli V (2017) Geochemistry of a soil catena developed from loess deposits in a semiarid environment, Sierra Chica de Córdoba, central Argentina. Geoderma 295:53–68CrossRefGoogle Scholar
  33. Rapela CW, Baldo EG, Pankhurst RJ, Fanning CM (2008) The devonian Achala Batholith of the Sierras Pampeanas: F-rich, aluminous A-type granites. In: Proceedings of VI South American symposium on isotope geology, pp 1–8Google Scholar
  34. Rouzaut S, Orgeira MJ (2017) Influence of volcanic glass on the magnetic signal of different paleosols in Córdoba, Argentina. Stud Geophys Geod 61:361–384CrossRefGoogle Scholar
  35. Schulte P, van Geldern R, Freitag H, AjazKarim A, Négrel P, Petelet-Giraud E, Probst A, Probst J-L, Telmer K, Veizer J, Barth JAC (2011) Applications of stable water and carbon isotopes in watershed research: weathering, carbon cycling, and water balances. Earth Sci Rev 10:20–31CrossRefGoogle Scholar
  36. Siegesmund S, Steenken A, Martino RD, Wemmer K, López de Luchi MG, Frei R, Presnyakov S, Guereschi AB (2010) Time constrains on the tectonic evolution of the Eastern Sierras Pampeanas (central Argentina). Int J Earth Sci 99:1199–1226CrossRefGoogle Scholar
  37. Strahler AN (1952) Hypsometric (area altitude) analysis of erosional topology. Geol Soc Am Bull 63:117–1142Google Scholar
  38. Tardy Y (1971) Characterization of the principal weathering types by the geochemistry of waters form some European and African crystalline rocks. Chem Geol 7:253–271CrossRefGoogle Scholar
  39. Wohl E (2010) Mountain rivers revisited. American Geophysical Union, Washington DCCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. O. Martínez
    • 1
  • V. A. Campodonico
    • 1
  • S. M. Formica
    • 1
  • P. J. Depetris
    • 2
  1. 1.Centro de Investigaciones en Ciencias de la Tierra (CICTERRA)CONICET-Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Academia Nacional de CienciasCórdobaArgentina

Personalised recommendations