Skip to main content
Log in

Geochemical and mineralogical composition of black weathering crusts on limestones from seven different European countries

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Twenty-seven samples of black weathering crust and host carbonates were studied from seven European countries (Germany, Hungary, Belgium, Czech Republic, France, Italy and Poland) representing 11 different sites. The samples were collected for sites for which long-term air pollution records are available. The mineralogical analyses (XRD, polarizing microscopy, SEM) have shown that despite decreasing SO2 emissions crust samples are still very rich in gypsum. Further, in all host rock samples gypsum was also detected. Good correlations (R2 > 0.9) were also found between water-soluble calcium and gypsum content and between sulphate and gypsum content both for black crusts and host rocks. The black gypsum crusts are four or five times richer in sulphate than the host rock. The conductivity of dissolved crust and host rock samples also shows a positive correlation with gypsum content of the samples. LA-ICP-MS analyses allowed the detection of high Pb-levels in black crusts and a negative shift in lead concentration at the crust/host rock transition. The lead content of the host rock is 2–5 mg/kg, while that of the crust is 3–25 mg/kg in the sample collected from Germany, while in the Belgian sample these values are 2–14 mg/kg and 80–870 mg/kg for the host rock and crust, respectively. The GC–MS technique allowed to detect the PAH content of black crusts and host rocks. The former one contains 0.6–15.6 (102.5) mg/kg, while in the host rock values between 0.2 and 2.4 mg/kg were found. The present study suggests that still large amounts of air pollution-related minerals and organic pollutants are found in the black weathering crusts of European carbonate buildings despite decreasing trends in air pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Amoroso GG, Fassina V (1983) Stone decay und conservation. Elsevier, Amsterdam, pp 1–453

    Google Scholar 

  • Antill SJ, Viles HA (1999) Deciphering the impacts of traffic on stone decay in oxford: some preliminary observations from old limestone walls. In: Jones MS, Wakefield RD (eds) Aspects of stone weathering, decay and conservation. Imperial College Press, London, pp 28–42

    Google Scholar 

  • Ausset P, Bannery F, Lefèvre RA (1992) Black-crust und air microparticles contents at Saint-Trophime, Arles. In: Delgado Rodriguez J, Henriques F, Termo Jeremias F (eds) 7th International congress on deterioration und conservation of stone, Lisbon, pp 325–334

  • Ausset P, Del Monte M, Lefèvre RA (1999) Embryonic sulfated black crusts on carbonate rocks in atmospheric simulation chamber and in the field: role of carbonaceous fly-ash. Atmos Environ 33:1525–1534

    Article  Google Scholar 

  • Baboian R (ed) (1986) Materials degradation caused by acid rain. Symposium series 318. American Chemical Society, Washington, DC

    Google Scholar 

  • Bonazza A, Sabbioni C, Ghedini N, Favoni O, Zappia G (2004) Carbon data in black crusts on European monuments. In: Saiz-Jimenez C (ed) Air pollution und cultural heritage. Taylor & Francis, London, pp 39–46

    Chapter  Google Scholar 

  • Bonazza A, Sabbioni C, Ghedini N (2005) Quantitative data on carbon fractions in interpretation of black crusts and soiling on European built heritage. Atmos Environ 39:2607–2618

    Article  Google Scholar 

  • Bonazza A, Brimblecombe P, Grossi CM, Sabbioni C (2007) Carbon in black crust from the tower of London. Environ Sci Technol 41:4199–4204

    Article  Google Scholar 

  • Brimblecombe P (1987) The big smoke: a history of air pollution in London since medieval times. Methuen, London, p 185

    Google Scholar 

  • Brimblecombe P (1996) Air composition und chemistry (Cambridge environmental chemistry series), 2nd edn. Cambridge University Press, Cambridge, p 253

    Google Scholar 

  • Brimblecombe P (2003) The effects of air pollution on the built environment. Air pollution reviews, vol. 2. Imperial College Press, London

    Book  Google Scholar 

  • Camuffo D (1998) Microclimate for cultural heritage. Elsevier, Amsterdam, p 432

    Google Scholar 

  • CAN (2015) The coal map of Europe. http://coalmap.eu/#/. Accessed Oct 2016

  • Charola AE (2001) Review of the literature on the topic of acidic deposition on stone. US/ICOMOS Sci J 3:19–58

    Google Scholar 

  • Charola AE, Ware R (2002). Acid deposition und the deterioration of stone: a brief review of a broad topic. In: Siegesmund S, Vollbrecht A (eds.) Natural stone, weathering phenomena, conservation strategies und case studies. Geological Society, London, Special publication 205, p 393–406

  • CHMI (2017) Český Hydrometeorologický Ústav. http://portal.chmi.cz/. Accessed Apr 2017

  • Climate-Data (2017) Klimadaten für Städte Weltweit. https://de.climate-data.org/. Accessed Apr 2017

  • De Kock T, Van Stappen J, Fronteau G, Boone M, De Boever W, Dagrain F, Silversmit G, Vincze L, Cnudde V (2017) Laminar gypsum crust on lede stone: microspatial characterization and laboratory acid weathering. Talanta 162:193–202

    Article  Google Scholar 

  • Del Monte M, Sabbioni C, Vittori O (1981) Airborne carbon particles und marble deterioration. Atmos Environ 15:645–652

    Article  Google Scholar 

  • Derbez M, Lefèvre RA (1996) Le contenu microparticulaire des croûtes gypseuses de la Cathédrale Saint-Gatien de Tours: comparaison avec l’air et la pluie. In: Riederer J (ed) Proceedings of the 8th international congress on deterioration and conservation of stone, Möller, Berlin, pp 359–370

  • DWD—Deutscher Wetterdienst (2016) Wetter und Klima. https://de.climate-data.org/. Accessed Oct 2016

  • Eberl DD (2003) User’s guide to RockJock—a program for determining quantitative mineralogy from powder X-ray diffraction data. U.S. Geological Survey Open-File Report 2003-78. https://pubs.usgs.gov/of/2003/of03-078/

  • EEA—EU European Environment Agency (2016a) Air pollutant emissions data. https://www.eea.europa.eu/data-and-maps/dashboards/air-pollutant-emissions-data-viewer. Accessed Dec 2016

  • EEA—EU European Environment Agency (2016b). SO2 interactive maps. http://www.eea.europa.eu/themes/air/interactive/so2. Accessed Dec 2016

  • Esbert RM, Diaz-Pache F, Alonso FJ, Ordaz J, Wood GC (1996) Solid particles of atmospheric pollution found on the Hontoria limestone of Burgos Cathedral (Spain). In: Riederer J (ed) Proceedings of the 8th international congress on deterioration and conservation of stone, Möller, Berlin, pp 393–399

  • Fitzner B, Heinrichs K, Kownatzki R (1996) Weathering forms: classification und mapping. In: Snethlage R (ed) Denkmalpflege und Naturwissenschaft, Natursteinkonservierung I. Verlag Ernst & Sohn, Berlin, pp 41–88

    Google Scholar 

  • Fobe B, Vleugels GJ, Roekens EJ, Hermosin B, Ortega-Calvo J, Del Junco AS, Van Grieken R, Saiz-Jimenez C (1995) Organic and inorganic compounds in limestone weathering crusts from cathedrals in southern and western Europe. Environ Sci Technol 29:1691–1701

    Article  Google Scholar 

  • Gavino M, Hermosin B, Vergès-Belmin V, Nowik W, Saiz-Jimenez C (2004) Composition of black crust from the Saint Denis Basilica, France as revealed by gas chromatography—mass spectrometry. J Sep Sci 27:513–523

    Article  Google Scholar 

  • Germinario L, Siegesmund S, Maritan L, Simon K, Mazzoli C (2017) Trachyte weathering in the urban built environment related to air quality. Herit Sci 5:44

    Article  Google Scholar 

  • Graue B, Siegesmund S, Oyhantcabal P, Naumann R, Licha T, Simon K (2013) The effect of air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban, and rural environments—a case study of the Cologne, Altenberg and Xanten cathedrals. Environ Earth Sci 69:1095–1124

    Article  Google Scholar 

  • Grün R (1931) Die Verwitterung von Steinen. Die Denkmalpflege 33:168–183

    Google Scholar 

  • Hildemann LM, Klinedinst DB, Klouda GA, Currie LA, Cass GR (1994) Sources of urban contemporary carbon aerosol. Environ Sci Technol 28:1565–1576

    Article  Google Scholar 

  • ICOMOS (2008). Illustrated glossary on stone deterioration patterns. In: Vergès-Belmin V (ed) ICOMOS International Scientific Committee for Stone, Ateliers 30 Impression, Champigny/Marne, France

  • Kaiser E (1910) Wetterbestätigkeit einer Reihe von Kalksteinen mit besonderer Berücksichtigung der Verhältnisse am Kölner Dom. Unpupl. Report, Gießen

  • Kieslinger A (1932) Zerstörung an Steinbauten—Ihre Ursachen und ihre Abwehr. Verlag Deuticke, Leipzig-Wien, p 346

    Google Scholar 

  • Kim BM, Seo J, Kim JY, Lee JY, Kim Y (2016) Transported versus local contributions from secondary and biomass burning sources to PM2.5. Atmos Environ 144:24–36

    Article  Google Scholar 

  • Klemm W, Siedel H (2002) Evaluation of the origin of sulphate compounds in building stone by sulphur isotope ratio. In: Siegesmund S, Weiss TS, Vollbrecht A (eds.) Natural stones, weathering phenomena, conservation strategies and case studies. Geological Society, London, Special Publications 205, pp 419–429

  • La Russa MF, Fermo P, Comite V, Belfiore CM, Barca D, Cerioni A, De Santis M, Barbagallo LF, Ricca M, Ruffolo SA (2017) The Oceanus statue of the Fontana di Trevi (Rome): the analysis of black crust as a tool to investigate the urban air pollution and its impact on the stone degradation. Sci Total Environ 593–594:297–309

    Article  Google Scholar 

  • Lima AL, Farrington JW, Reddy CM (2005) Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environ Forensics 6:109–131

    Article  Google Scholar 

  • Maravelaki-Kalaitzaki P, Biscontin G (1999) Origin, characteristics and morphology of weathering crusts on Istria stone in Venice. Atmos Environ 33:1699–1709

    Article  Google Scholar 

  • McAlister JJ, Smith BJ, Török Á (2006) Element partitioning and potential mobility within surface dusts on buildings in a polluted urban environment, Budapest. Atmos Environ 40:6780–6790

    Article  Google Scholar 

  • McAlister JJ, Smith BJ, Török Á (2008) Transition metals and water-soluble ions in deposits on a building and their potential catalysis of stone decay. Atmos Environ 42:7657–7668

    Article  Google Scholar 

  • Moropoulou A, Bisbikou K, Torfs K, Van Grieken R, Zezza F, Macri F (1998) Origin und growth of weathering crusts on ancient marbles in industrial atmosphere. Atmos Environ 42:7657–7668

    Google Scholar 

  • Neuser RD, Bruhn F, Götze J, Habermann D, Richter DK (1995) Kathodolumineszenz: Methodik und Anwendung. Zentralblatt für Geologie und Paläontologie Teil I, H.1/2, 287-306

  • Pozo-Antonio JS, Pereira MFC, Rocha CSA (2017) Microscopic characterisation of black crust on different substrates. Sci Total Environ 584–585:291–306

    Article  Google Scholar 

  • Price CA (1996) Stone conservation. An overview of current research. Research in Conservation, Getty Conservation Institute, Los Angeles

    Google Scholar 

  • Rodriguez-Navarro C, Sebastian E (1996) Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci Total Environ 187:79–91

    Article  Google Scholar 

  • Rosvall J, Aleby S (eds) (1988) Safeguarding our architechtural heritage. Elsevier, Amsterdam

    Google Scholar 

  • Sabbioni C (1995) Contribution of atmospheric deposition to the formation of damage layers. Sci Total Environ 167:49–55

    Article  Google Scholar 

  • Sabbioni C (2003) Mechanism of air pollution damage to stone. In: Brimblecombe P (ed) The effects of air pollution on the built environment, vol 2. Air pollution reviews. World Scientific, Singapore, pp 63–106

    Chapter  Google Scholar 

  • Sánchez JS, Vidal Romaní JR, Alves C (2011) Deposition of particles on gypsum-rich coatings of historic buildings in urban and rural environments. Constr Build Mater 25:813–822

    Article  Google Scholar 

  • Schaffer RJ (1932) The weathering of natural building stones. His Majesty’s Stationary Office, London, p 149

    Google Scholar 

  • Siegesmund S, Török Á, Hüpers A, Müller C, Klemm W (2007) Mineralogical, geochemical und microfabric evidences of gypsum crusts: a case study from Budapest. Environ Geol 52:358–397

    Article  Google Scholar 

  • Simoneit BRT (2002) Biomass burning—a review of organic tracers for smoke from incomplete combustion. Appl Geochem 17:129–162

    Article  Google Scholar 

  • Slezakova K, Castro D (2011) Air pollution from traffic emissions in Oporto. Microchem J 99:51–59

    Article  Google Scholar 

  • Smith BJ, Viles HA (2006). Rapid catastrophic decay of building limestones: thoughts on causes, effects und consequences. In: Fort R, Alvarez de Buego M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage weathering und conservation. Taylor & Francis/Balkema, London I, pp 191–197

  • Smith BJ, Török Á, McAlister JJ, Megarry Y (2003) Observations on the factors influencing stability of building stones following contour scaling: a case study of oolitic limestones from Budapest, Hungary. Build Environ 38:1173–1183

    Article  Google Scholar 

  • Snethlage R (2008) Leitfaden Steinkonservierung—Planung von Untersuchungen und Maßnahmen zur Erhaltung von Denkmälern aus Naturstein. Fraunhofer IRB Verlag, Stuttgart, pp 48–76

    Google Scholar 

  • Torfs KM, Van Grieken RE (1997) Chemical relations between atmospheric aerosols, deposition and stone decay layers on historic buildings at the Mediterranean coast. Atmos Environ 31:2179–2192

    Article  Google Scholar 

  • Török Á (2002) Oolitic limestone in polluted atmospheric environment in Budapest: weathering phenomena und alterations in physical properties. In: Siegesmund S, Weiss TS, Vollbrecht A (eds) Natural stones, weathering phenomena, conservation strategies und case studies. Geological Society, London, Special Publications 205, pp 363–379

  • Török Á (2003) Surface strength and mineralogy of weathering crusts on limestone buildings in Budapest. Building Environ 38(9–10):1185–1192

    Article  Google Scholar 

  • Török Á (2008) Black crusts on travertine: factors controlling development and stability. Environ Geol 56:583–594

    Article  Google Scholar 

  • Török Á, Rozgonyi N (2004) Mineralogy and morphology of salt crusts on porous limestone in urban environment. Environ Geol 46:333–349

    Article  Google Scholar 

  • Török Á, Müller C, Hüpers A, Hoppert M, Siegesmund S, Weiss T (2007) Differences in texture, physical properties und microbiology of weathering crust und host rock: a case study of the porous limestone of Budapest (Hungary). In: Prykril R, Smith JB (eds) Building stone decay: from diagnosis to conservation, Geological Society, London, Special Publications 271, pp 261–276

  • Török Á, Licha T, Simon K, Siegesmund S (2011) Urban and rural limestone weathering; the contribution of dust to black crust formation. Environ Earth Sci 63:675–693

    Article  Google Scholar 

  • Urosevic M, Yebra-Rodríguez A, Sebastián-Pardo E, Cardell C (2012) Black soiling of an architectural limestone during two-year term exposure to urban air in the city of Granada (S Spain). Sci Total Environ 414:564–575

    Article  Google Scholar 

  • Viles HA (1993) The environmental sensitivity of blistering of limestones walls in Oxford, England: a preliminary study. In: Thomas DSG, Allison RJ (eds) Landscape sensitivity. John Wiley, Chichester, pp 309–326

    Google Scholar 

  • Warner W, Ruppert H, Licha T (2016) Application of PAH concentration profiles in lake sediments as indicators for smelting activity. Sci Total Environ 563–564:587–592

    Article  Google Scholar 

  • Wetterkontor (2016). Wetter-Rückblick—Monats-und Jahreswerte http://www.wetterkontor.de/. Accessed Oct 2016

  • Winkler EM (1994) Stone: Properties, durability in man’s environment. Springer, New York

    Google Scholar 

  • WMO—UN World Meteorological Organisation (2017) https://www.wmo.int/. Accessed Apr 2017

Download references

Acknowledgements

The financial support of Deutsche Bundesstiftung Umwelt (DBU, 30016/686) and Hungarian National Research, Development and Innovation (NKFI) Fund (K 116532) is appreciated. We are grateful for the constructive discussions on analytical techniques and results with István Dunkl. We thank a lot Klaus Wemmer, who helped with the identification of mineral phases during XRD analyses. The help of Prof. Dr. Bernhard Schulz, Sabine Haser in SEM analyses is appreciated. We are grateful to Mechthild Rittmeier and Wiebke Warner for GC–MS and IC analyses, Klaus Simon for LA-ICP-MS analyses, Harald Tonn and Alfons van den Kerkhof for microscopy. We would like to thank the samples from France and Italy for Patricia Vazquez and Luigi Germinario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orsolya Farkas.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Stone in the Architectural Heritage: from quarry to monuments—environment, exploitation, properties and durability”, guest edited by Siegfried Siegesmund, Luís Sousa and Rubén Alfonso López-Doncel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkas, O., Siegesmund, S., Licha, T. et al. Geochemical and mineralogical composition of black weathering crusts on limestones from seven different European countries. Environ Earth Sci 77, 211 (2018). https://doi.org/10.1007/s12665-018-7384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7384-8

Keywords

Navigation