Skip to main content
Log in

Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Satellite retrieval of precipitation is a great challenge in arid regions where light precipitation prevails. To improve the accuracy of satellite precipitation products in Xinjiang, which is the driest region in China, this study first evaluated the performance of two widely used monthly satellite products from April 2014 to August 2017. The first was the Tropical Rainfall Measuring Mission (TRMM) 3B43 version 7 (hereafter 3B43V7), and the second was the Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG) (hereafter 3IMERGM). The 3IMERGM product was then corrected by a stepwise regression model using topographic variables derived from digital elevation model (DEM). A comparison between satellite estimates and in situ measurements indicates that both 3B43V7 and 3IMERGM overestimate precipitation overall, but that 3IMERGM performs better than 3B43V7. The relative biases (RB) of 3B43V7 and 3IMERGM were found to be 10.24 and 7.76%, respectively. The correlation coefficient (CC) between 3IMERGM and the gauges is 0.68, which is higher than the CC observed (i.e., 0.62) between 3B43V7 and the gauges. To comprehensively evaluate the performance of the corrected model, a tenfold cross-validation method was used. The results showed that the corrected 3IMERGM (C-3IMERGM) performed much better than 3IMERGM. Specifically, CC was increased from 0.68 to 0.73, and RB is decreased from 7.76 to − 1.65%. Furthermore, C-3IMERGM achieves a better precipitation distribution than the uncorrected satellite product and even than scarce gauge measurements. The actual spatial pattern of precipitation represented that the precipitation bands in the Kunlun Mountains located in southern Xinjiang were captured by C-3IMERGM, but missed by the other products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AghaKouchak A, Mehran A, Norouzi H, Behrangi A (2012) Systematic and random error components in satellite precipitation data sets. Geophys Res Lett 39:L09406. https://doi.org/10.1029/2012GL051592

    Article  Google Scholar 

  • Barros AP, Lettenmaier DP (1992) Dynamic modeling of the spatial distribution of precipitation in remote mountainous areas. Mon Weather Rev 121:1195–1214

    Article  Google Scholar 

  • Barros AP, Lettenmaier DP (1994) Dynamic modeling of orographically induced precipitation. Rev Geophys 32:265–284

    Article  Google Scholar 

  • Basist A, Bell GD (1994) Statistical relationships between topography and precipitation patterns. J Climate. https://doi.org/10.1175/1520-0442(1994)007

    Google Scholar 

  • Beale EML, Kendall MG, Mann DW (1967) The discarding of variables in multivariate analysis. Biometrika 54:357–366. https://doi.org/10.2307/2335028

    Article  Google Scholar 

  • Blacutt L, Herdies D, Goncalves L, Vila D, Andrade M (2015) Precipitation comparison for the CFSR, MERRA, TRMM3B42 and combined scheme datasets in Bolivia. Atmos Res 163:117–131. https://doi.org/10.1016/j.atmosres.2015.02.002

    Article  Google Scholar 

  • Bro R, Smilde AK (2014) Principal component analysis. Anal Methods 6(9):2812–2831. https://doi.org/10.1039/c3ay41907j

    Article  Google Scholar 

  • Chatzithomas C, Alexandris S, Karavitis C (2015) Multivariate linear relation for precipitation: a new simple empirical formula. Stud Geophys Geod. https://doi.org/10.1007/s11200-013-1162-6

    Google Scholar 

  • Crochet P (2009) Enhancing radar estimates of precipitation over complex terrain using information derived from an orographic precipitation model. J Hydrol 377:417–433. https://doi.org/10.1016/j.jhydrol.2009.08.038

    Article  Google Scholar 

  • Ferraro RR, Smith EA, Berg W, Huffman GJ (1998) A screening methodology for passive microwave precipitation retrieval algorithms. J Atmos Sci 55:1583–1600. https://doi.org/10.1175/1520-0469(1998)055,1583:ASMFPM.2.0.CO;2

    Article  Google Scholar 

  • Golian S, Moazami S, Kirstetter PE, Hong Y (2015) Evaluating the performance of merged multi-satellite precipitation products over a complex terrain. Water Resour Manag 29:4885–4901. https://doi.org/10.1007/s11269-015-1096-6

    Article  Google Scholar 

  • Groisman PV, Legates DR (1994) The accuracy of United States precipitation data. Bull Am Meteorol Soc 75:215–227

    Article  Google Scholar 

  • Guan H, Wilson JL, Makhnin O (2005) Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J Hydrometeorol. https://doi.org/10.1175/JHM448.1

    Google Scholar 

  • Guo H, Chen S, Bao A, Behrangi A, Hong Y, Ndayisaba F, Hu J, Stepanian PM (2016) Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China. Atmos Res. https://doi.org/10.1016/j.atmosres.2016.02.020

    Google Scholar 

  • Habib E, Ciach G, Krajewski W (2004) A method for filtering out rain gauge representativeness errors from the verification distributions of radar and rain gauge rainfall. Adv Water Resour 27:967–980

    Article  Google Scholar 

  • Hirpa FA, Gebremichael M, Hopson T (2010) Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J Appl Meteorol Climatol 49:1044–1051. https://doi.org/10.1175/2009JAMC2298.1

    Article  Google Scholar 

  • Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Oki R, Nakamura M, Iguchi T (2014) The global precipitation measurement mission. Bull Am Meteorol Soc 95(5):701–722

    Article  Google Scholar 

  • Hu Z, Hu Q, Zhang C, Chen X, Li Q (2016) Evaluation of reanalysis, spatially-interpolated and satellite remotely-sensed precipitation datasets in Central Asia. J Geophy Res. https://doi.org/10.1002/2016jd024781

    Google Scholar 

  • Huang A, Zhao Y, Zhou Y, Yang B, Zhang L, Dong X, Fang D, Wu Y (2016) Evaluation of multisatellite precipitation products by use of ground-based data over China. J Geophys Res Atmos. https://doi.org/10.1002/2016JD025456

    Google Scholar 

  • Huffman GJ, Bolvin DT (2017) TRMM and other data precipitation data set documentation. http://pmm.nasa.gov/sites/default/files/document_files/3B42_3B43_doc_V7_4_19_17.pdf

  • Huffman G, Bolvin D, Nelkin E, Wolff D, Adler R, Gu G, Hong Y, Bowman K, Stocker E (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55

    Article  Google Scholar 

  • Huffman GJ, Adler RF, Bolvin DT, Nelkin EJ (2009) The TRMM multi-satellite precipitation analysis (TMPA). In: Gebremichael M, Hossain F (eds) Satell Appl Surf Hydrol. Springer, Dordrecht, pp 3–22. https://doi.org/10.1007/978-90-481-2915-7_1

  • Huffman GJ, Bolvin DT, Braithwaite D, Hsu K, Joyce R, Kidd C, Nelkin EJ, Xie P (2017a) NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG) algorithm theoretical basis document (ATBD) Version 4.5. http://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.1b

  • Huffman GJ, Bolvin DT, Nelkin EJ (2017b) Integrated multi-satellite retrievals for GPM (IMERG) technical documentation. http://pmm.nasa.gov/sites/default/files/document_files/IMERG_doc_171117b.pdf

  • Hutchinson P (1973) The interaction of relief and synoptic situation on the distribution of storm rainfall in the vicinity of Dunedin. NZ Geogr 29:31–44. https://doi.org/10.1111/j.1745-7939.1973.tb00691.x

    Article  Google Scholar 

  • Ji X, Chen Y (2012) Characterizing spatial patterns of precipitation based on corrected TRMM 3B43 data over the mid Tianshan Mountains of China. J Mt Sci 9:628–645

    Article  Google Scholar 

  • Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydrometeorol 5(3):487–503

    Article  Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200

    Article  Google Scholar 

  • Karavitis CA, Kerkides P (2002) Estimation of the water resources potential in the Island system of the Aegean Archipelago, Greece. Water Int 27:243–254. https://doi.org/10.1080/02508060208686998

    Article  Google Scholar 

  • Kubota T, Shige S, Hashizurne H, Aonashi K, Takahashi N, Seto S, Hirose M, Takayabu YN, Ushio T, Nakagawa K, Wanami K, Kachi M, Okamoto K (2007) Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: production and validation. IEEE Trans Geosci Remote Sens 45(7):2259–2275

    Article  Google Scholar 

  • Legates D, Willmott C (1990) Mean seasonal and spatial variability in gauge-corrected, global precipitation. Int J Climatol 10:111–127

    Article  Google Scholar 

  • Li Q, Chen Y, Shen Y, Li X, Xu J (2011a) Spatial and temporal trends of climate change in Xinjiang, China. J Geogr Sci 21(6):1007–1018

    Article  Google Scholar 

  • Li X, Jiang F, Lia L, Wang G (2011b) Spatial and temporal variability of precipitation concentration index, concentration degree and concentration period in Xinjiang, China. Int J Climatol 31:1679–1693. https://doi.org/10.1002/joc.2181

    Google Scholar 

  • Li Y, Yao N, Sahin S, Appels WM (2016) Spatiotemporal variability of four precipitation-based drought indices in Xinjiang, China. Theor Appl Climatol. https://doi.org/10.1007/s00704-016-1827-5

    Google Scholar 

  • Liu C, Zipser E (2015) The global distribution of largest, deepest, and most intense precipitation systems. Geophys Res Lett 42(9):3591–3595

    Article  Google Scholar 

  • Ma L, Zhang T, Frauenfeld O, Ye B, Yang D, Qin D (2009) Evaluation of precipitation from the ERA-40, NCEP-1, and NCEP-2 reanalysis and CMAP-1, CMAP-2, and GPCP-2 with ground-based measurements in China. J Geophys Res 114:D09105. https://doi.org/10.1029/2008JD011178

    Google Scholar 

  • Ma Y, Zhang Y, Yang D, Farhan SB (2014) Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region. Int J Climatol. https://doi.org/10.1002/joc.4045

    Google Scholar 

  • Maggioni V, Saplano MRP, Adler RF (2016) Estimating uncertainties in high-resolution satellite precipitation products: systematic or random error? J Hydrometeorol 17:1119–1129. https://doi.org/10.1175/JHM-D-15-0094.1

    Article  Google Scholar 

  • Michaud JD, Auvine BA, Penalba OC (1995) Spatial and elevational variations of summer rainfall in the Southwestern United States. J Appl Meteorol 34(12):2689–2703

    Article  Google Scholar 

  • Newton RG, Spurrell DJ (1967) A development of multiple regression for the analysis of routine data. Appl Stat 16:51–64

    Article  Google Scholar 

  • Ouallouche F, Ameur S (2014) Rainfall detection over northern Algeria by combining MSG and TRMM data. Appl Water Sci 6:1–10. https://doi.org/10.1007/s13201-014-0204-8

    Article  Google Scholar 

  • Roe GH, Montgomery DR, Hallet B (2002) Orographic precipitation and the relief of mountain ranges. J Geophys Res 108(B6):2315. https://doi.org/10.1029/2001jb001521

    Google Scholar 

  • Shen Y, Pan Y, Yu J, Zhao P, Zhou Z (2013) Quality assessment of hourly merged precipitation product over China. Trans Atmos Sci 36(1):37–46. https://doi.org/10.13878/j.cnki.dqkxxb.2013.01.005 (in Chinese)

    Google Scholar 

  • Shige S, Kida S, Ashiwake H, Kubota T, Aonashi K (2013) Improvement of TMI rain retrievals in mountainous areas. J Appl Meteorol Climatol 52:242–254

    Article  Google Scholar 

  • Shige S, Yamamoto MK, Taniguchi A (2014) Improvement of TMI rain retrieval over the Indian Subcontinent. In: Lakshmi V (ed) Remote sensing of the terrestrial water cycle, Geophysical monograph 206. American Geophysical Union, pp 27–42

  • Sinclair MR, Wratt DS, Henderson RD, Gray WR (1997) Factors affecting the distribution and spillover of precipitation in the Southern Alps of New Zealand—a case study. J Appl Meteorol 36(5):428–442

    Article  Google Scholar 

  • Smith RB (1979) The influence of mountains on the atmosphere. Adv Geophys 21(4):87–217

    Article  Google Scholar 

  • Sorooshian S, Hsu KL, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81(9):2035–2046

    Article  Google Scholar 

  • Tan X, Shao D (2016) Precipitation trends and teleconnections identified using quantile regressions over Xinjiang. Int J Climatol. https://doi.org/10.1002/joc.4794

    Google Scholar 

  • Tang G, Long D, Hong Y (2016a) Systematic anomalies over land water bodies of High Mountaion Asia in TRMM precipitation estimates: no longer a problem for the GPM era? IEEE Geosci Remote Sens Lett. https://doi.org/10.1190/LGRS.2016.2606769

    Google Scholar 

  • Tang G, Ma Y, Long D, Zhong L, Hong Y (2016b) Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. J Hydrol 533:152–167

    Article  Google Scholar 

  • Tang G, Zeng Z, Long D, Guo X, Yong B, Zhang W, Hong Y (2016c) Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a midlatitude basin: is day-1 IMERG a good successor for TMPA 3B42V7? J Hydrometeorol 17(1):121–137

    Article  Google Scholar 

  • Taniguchi A, Shige S, Yamamoto MK, Mega T, Kida S, Kubota T, Kachi M, Ushio T, Aonashi K (2013) Improvement of high-resolution satellite rainfall product for Typhoon Morakot (2009) over Taiwan. J Hydrometeorol 14:1859–1871

    Article  Google Scholar 

  • Villarini G, Krajewski WF (2008) Empirically-based modeling of spatial sampling uncertainties associated with rainfall measurements by rain gauges. Adv Water Resour 31(7):1015–1023

    Article  Google Scholar 

  • Ward E, Buytaert W, Peaver L, Wheater H (2011) Evaluation of precipitation products over complex mountainous terrain: a water resources perspective. Adv Water Resour 34(10):1222–1231. https://doi.org/10.1016/j.advwatres.2011.05.007

    Article  Google Scholar 

  • Willmott CJ (1981) On the validation of model. Phys Geogr 2:184–194. https://doi.org/10.1080/02723646.1981.10642213

    Google Scholar 

  • Wu C, Chen JM (2012) The use of precipitation intensity in estimating gross primary production in four northern grasslands. J Arid Environ 82:11–18

    Article  Google Scholar 

  • Xu J, Chen Y, Li W, Liu Z, Tang J, Wei C (2016) Understanding temporal and spatial complexity of precipitation distribution in Xinjiang, China. Theor Appl Climatol 123:321–333

    Article  Google Scholar 

  • Yamamoto MK, Shige S (2015) Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers. Atmos Res 163:36–47. https://doi.org/10.1016/j.atmosres.2014.07.024

    Article  Google Scholar 

  • Yang Y, Luo Y (2014a) Using the back propagation neural network approach to bias correct TMPA data in the arid region of Northwest China. J Hydrometeorol 15(1):459–473

    Article  Google Scholar 

  • Yang Y, Luo Y (2014b) Evaluating the performance of remote sensing precipitation products CMORPH, PERSIANN, and TMPA, in the arid region of northwest China. Theor Appl Climatol 118:429–445

    Article  Google Scholar 

  • Yin ZY, Liu X, Zhang X, Chung CF (2004) Using a geographic information system to improve Special Sensor Microwave Imager precipitation estimates over the Tibetan Plateau. J Geophys Res Atmos 109:2004. https://doi.org/10.1029/2003JD003749

    Article  Google Scholar 

  • Yin ZY, Zhang X, Liu X, Colella M, Chen X (2008) An assessment of the biases of satellite rainfall estimates over the Tibetan Plateau and correction methods based on topographic analysis. J Hydrometeorol 9(3):301–326

    Article  Google Scholar 

  • Yong B, Liu D, Gourley JJ, Tian Y, Huffman GJ, Ren L, Hong Y (2015) Global view of real-time TRMM multisatellite precipitation analysis: implications for its successor global precipitation measurement mission. Bull Am Meteorol Soc 96(2):283–296

    Article  Google Scholar 

  • Zhang Q, Singh VP, Li J, Jiang F, Bai Y (2012) Spatio-temporal variations of precipitation extremes in Xinjiang, China. J Hydrol 434–435:7–18

    Article  Google Scholar 

  • Zhang Y, Ge Q, Liu M (2015) Extreme precipitation changes in the semiarid region of Xinjiang, Northwest China. Adv Meteorol. https://doi.org/10.1155/2015/645965

    Google Scholar 

  • Zhao C, Ding Y, Ye B, Yao S, Zhao Q, Wang Z, Wang Y (2011) An analyses of long-term precipitation variability based on entropy over Xinjiang, northwestern China. Hydrol Earth Syst Sci Dis 8(2):2975–2999

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41675029, 41565003 and U170310011), the Project of State Key Laboratory of Severe Weather of Chinese Academy of Meteorological Sciences (2016LASW-B12), the Postgraduate Innovation Program of Jiangsu (KYLX15_0864), the Basic Research Operating Expenses of the Central Level Non-profit Research Institutes (IDM2016002), and the Xinjiang Uygur Autonomous Region high-level personnel funding (2017-41). We are grateful to the scientists in NASA science team for providing satellite precipitation data and DEM data. Both 3B43V7 and IMERG data were obtained from the Precipitation Measurement Missions (PMM) web site (http://pmm.nasa.gov/). The DEM data were obtained from the NASA website (http://reverb.echo.nasa.gov/reverb/). We thank Xinjiang Meteorological Information Center for providing the gauge observed precipitation data.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyu Lu or Ming Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Wei, M., Tang, G. et al. Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground-based data over Xinjiang, China. Environ Earth Sci 77, 209 (2018). https://doi.org/10.1007/s12665-018-7378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7378-6

Keywords

Navigation