Babu CN, Reddy BE (2014) A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl Soft Comput 23:27–38. https://doi.org/10.1016/j.asoc.2014.05.028
Article
Google Scholar
Badrzadeh H, Sarukkalige R, Jayawardena AW (2013) Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting. J Hydrol 507:75–85. https://doi.org/10.1016/j.jhydrol.2013.10.017
Article
Google Scholar
Bodian A, Dezetter A, Deme A, Diop L (2016) Hydrological evaluation of TRMM rainfall over the upper Senegal River basin. Hydrology 3:15. https://doi.org/10.3390/hydrology3020015
Article
Google Scholar
Ch S, Anand N, Panigrahi BK, Mathur S (2013) Stream-flow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing 101:18–23. https://doi.org/10.1016/j.neucom.2012.07.017
Article
Google Scholar
Cheng C, Niu W, Feng Z et al (2015) Daily reservoir runoff forecasting method using artificial neural network based on quantum-behaved particle swarm optimization. Water 7:4232–4246. https://doi.org/10.3390/w7084232
Article
Google Scholar
Deo RC, Wen X, Qi F (2016) A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset. Appl Energy 168:568–593. https://doi.org/10.1016/j.apenergy.2016.01.130
Article
Google Scholar
Dione O (1996) Evolution Climatique Récente et Dynamique Fluviale dans les Hauts Bassins des Fleuves Sénégal et Gambie. Science et changements planétaires/Sécheresse 8:300–301
Google Scholar
Fahimi F, Yaseen ZM, El-shafie A (2016) Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theor Appl Climatol. https://doi.org/10.1007/s00704-016-1735-8
Google Scholar
Ghorbani MA, Zadeh HA, Isazadeh M, Terzi O (2016) A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environ Earth Sci 75:1–14. https://doi.org/10.1007/s12665-015-5096-x
Article
Google Scholar
Gong Y, Zhang Y, Lan S, Wang H (2016) A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water Resour Manag 30:375–391
Article
Google Scholar
Guimarães Santos CA, Da Silva GBL (2014) Daily stream-flow forecasting using a wavelet transform and artificial neural network hybrid models. Hydrol Sci J 59:312–324
Article
Google Scholar
Hannan SA, Manza RR, Ramteke RJ (2010) Generalized regression neural network and radial basis function for heart disease diagnosis. Int J Comput Appl 7:975–8887. https://doi.org/10.5120/1325-1799
Google Scholar
Jain SK (2012) Modeling river stage–discharge–sediment rating relation using support vector regression. Hydrol Res 43:851–861. https://doi.org/10.2166/nh.2011.101
Article
Google Scholar
Kagoda PA, Ndiritu J J, Ntuli C, Mwaka C (2010) Application of radial basis function neural networks to short-term stream-flow forecasting. Phys Chem Earth 35:571–581. https://doi.org/10.1016/j.pce.2010.07.021
Article
Google Scholar
Kane H, Diallo A (2005) Etude portant sur l’évaluation de l’état de l’environnement des ressources naturelles et des ressources en eau dans la partie guinéenne du bassin du fleuve Sénégal, en se servant du système d’indicateurs de l’Observatoire de l’environnement de l’OMVS. OMVS Report, Dakar, 2005 (In French)
Kashid SS, Ghosh S, Maity R (2010) Stream-flow prediction using multi-site rainfall obtained from hydroclimatic teleconnection. J Hydrol 395:23–38. https://doi.org/10.1016/j.jhydrol.2010.10.004
Article
Google Scholar
Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351:299–317. https://doi.org/10.1016/j.jhydrol.2007.12.014
Article
Google Scholar
Kim S, Shiri J, Kisi O (2012) Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour Manag 26:3231–3249. https://doi.org/10.1007/s11269-012-0069-2
Article
Google Scholar
Kisi Ö (2006) Generalized regression neural networks for evapotranspiration modelling. Hydrol Sci J 51:1092–1105
Article
Google Scholar
Kisi O, Cimen M (2011) A wavelet-support vector machine conjunction model for monthly stream-flow forecasting. J Hydrol 399:132–140. https://doi.org/10.1016/j.jhydrol.2010.12.041
Article
Google Scholar
Kumar PS, Praveen TV, Prasad MA (2016) Artificial neural network model for rainfall-runoff: a case study. Int J Hybrid Inf Technol 9:263–272
Article
Google Scholar
Kuo CC, Gan TY, Yu PS (2010) Seasonal stream-flow prediction by a combined climate-hydrologic system for river basins of Taiwan. J Hydrol 387:292–303. https://doi.org/10.1016/j.jhydrol.2010.04.020
Article
Google Scholar
Liu M, Lu J (2014) Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river? Environ Sci Pollut Res. https://doi.org/10.1007/s11356-014-3046-x
Google Scholar
Makwana JJ, Tiwari MK (2014) Intermittent stream-flow forecasting and extreme event modelling using wavelet based artificial neural networks. Water Resour Manag 28:4857–4873. https://doi.org/10.1007/s11269-014-0781-1
Article
Google Scholar
Ndiaye O (2010) The predictability of the sahelian climate: seasonal sahel rainfall and onset over Senegal. Columbia University, Columbia
Google Scholar
Ni Q, Wang L, Ye R et al (2010) Evolutionary modeling for stream-flow forecasting with minimal datasets: a case study in the west Malian river, China. Environ Eng Sci 27:377–385. https://doi.org/10.1089/ees.2009.0082
Article
Google Scholar
Nourani V, Hosseini Baghanam A, Adamowski J, Kisi O (2014) Applications of hybrid wavelet-artificial intelligence models in hydrology: a review. J Hydrol 514:358–377. https://doi.org/10.1016/j.jhydrol.2014.03.057
Article
Google Scholar
Prairie JR, Rajagopalan B, Fulp TJ, Zagona EA (2006) Modified K-NN model for stochastic stream-flow simulation. J Hydrol Eng 11:371–378. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:4(371)
Article
Google Scholar
Raghavendra S, Deka PC (2014) Support vector machine applications in the field of hydrology: a review. Appl Soft Comput J 19:372–386. https://doi.org/10.1016/j.asoc.2014.02.002
Article
Google Scholar
Rubio G, Pomares H, Rojas I, Herrera LJ (2011) A heuristic method for parameter selection in LS-SVM: application to time series prediction. Int J Forecast 27:725–739. https://doi.org/10.1016/j.ijforecast.2010.02.007
Article
Google Scholar
Shiri J, Kisi O (2010) Short-term and long-term stream-flow forecasting using a wavelet and neuro-fuzzy conjunction model. J Hydrol 394:486–493. https://doi.org/10.1016/j.jhydrol.2010.10.008
Article
Google Scholar
Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2:568–576. https://doi.org/10.1109/72.97934
Article
Google Scholar
Sujay RN, Deka PC (2015) Forecasting monthly groundwater level fluctuations in coastal aquifers using hybrid Wavelet packet–Support vector regression. Cogent Eng 2(1). https://doi.org/10.1080/23311916.2014.999414
Taormina R, Chau KW (2015) ANN-based interval forecasting of stream-flow discharges using the LUBE method and MOFIPS. Eng Appl Artif Intell 45:429–440. https://doi.org/10.1016/j.engappai.2015.07.019
Article
Google Scholar
Tayyab M, Zhou J, Zeng X, Adnan R (2016) Discharge forecasting by applying artificial neural networks at the Jinsha river basin, China. Eur Sci J 12:1857–7881. https://doi.org/10.19044/esj.2016.v12n9p108
Google Scholar
Toth E, Brath A (2007) Multistep ahead stream-flow forecasting: role of calibration data in conceptual and neural network modeling. Water Resour Res 43:1–11. https://doi.org/10.1029/2006WR005383
Article
Google Scholar
Vapnik V (1995) The nature of statistical learning theory. Springer, New York
Book
Google Scholar
Varis O, Lahtela V (2002) Integrated water resources management along the Senegal River: introducing an analytical framework. Int J Water Resour Dev 18:501–521. https://doi.org/10.1080/0790062022000017374
Article
Google Scholar
Wang W, Van Gelder PH, Vrijling JK, Ma J (2006) Forecasting daily stream-flow using hybrid ANN models. J Hydrol 324:383–399. https://doi.org/10.1016/j.jhydrol.2005.09.032
Article
Google Scholar
Wang WC, Chau KW, Cheng CT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374:294–306. https://doi.org/10.1016/j.jhydrol.2009.06.019
Article
Google Scholar
Wen X, Si J, He Z et al (2015) Support-vector-machine-based models for modeling daily reference evapotranspiration with limited climatic data in extreme arid regions. Water Resour Manag 29:3195–3209. https://doi.org/10.1007/s11269-015-0990-2
Article
Google Scholar
Willmott CJ (1981) On the validation of models. Phys Geogr 2:184–194
Google Scholar
Yaseen ZM, El-Shafie A, Afan HA et al (2015a) RBFNN versus FFNN for daily river flow forecasting at Johor river, Malaysia. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1952-6
Google Scholar
Yaseen ZM, El-shafie A, Jaafar O et al (2015b) Artificial intelligence based models for stream-flow forecasting: 2000–2015. J Hydrol 530:829–844. https://doi.org/10.1016/j.jhydrol.2015.10.038
Article
Google Scholar
Yaseen ZM, Jaafar O, Deo RC et al (2016) Stream-flow forecasting using extreme learning machines: a case study in a semi-arid region in Iraq. J Hydrol. https://doi.org/10.1016/j.jhydrol.2016.09.035
Google Scholar