Skip to main content

Optimized rule-based logistic model tree algorithm for mapping mangrove species using ALOS PALSAR imagery and GIS in the tropical region

Abstract

The main objective of this study is to map the spatial distribution of mangrove species and assess their changes from 2010 to 2015 in Hai Phong City of Vietnam located on the tropical region using the ALOS PALSAR data and an optimized rule-based decision tree technique. For this purpose, ALOS PALSAR imagery for the above period and GIS data were collected and used, and then, spatial distributions of mangrove species were derived using logistic model tree (LMT) classifier. The LMT is current state-of-the-art machine learning method that has not been used for mapping of mangrove species. The results showed that incorporation of ALOS PALSAR imagery and GIS in the LMT algorithm provides satisfactory overall accuracy and kappa coefficient. The ALOS-2 PALSAR for 2015 achieved better overall accuracy, with an increment of 3.6% in mapping mangrove species than that of the ALOS PALSAR for 2010. The ALOS-2 PALSAR-derived model yielded the overall accuracy of 83.8% and the kappa coefficient of 0.81, compared with those of the ALOS PALSAR-derived model, 80.2% and 0.78, respectively. The results of classification for 2010 and 2015 were significantly different using the McNemar test. This research demonstrates the potential use of ALOS PALSAR together with machine learning techniques in monitoring mangrove species in tropical areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ahmed N, Glaser M (2016) Coastal aquaculture, mangrove deforestation and blue carbon emissions: is REDD+ a solution? Mar Policy 66:58–66. https://doi.org/10.1016/j.marpol.2016.01.011

    Article  Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349. https://doi.org/10.1017/S0376892902000231

    Article  Google Scholar 

  • Arnesen AS, Silva TSF, Hess LL, Novo EMLM, Rudorff CM, Chapman BD, McDonald KC (2013) Monitoring flood extent in the lower Amazon River floodplain using ALOS/PALSAR ScanSAR images. Remote Sens Environ 130:51–61. https://doi.org/10.1016/j.rse.2012.10.035

    Article  Google Scholar 

  • Attarchi S, Gloaguen R (2014) Classifying complex mountainous forests with L-band SAR and Landsat data integration: a comparison among different machine learning methods in the Hyrcanian Forest. Remote Sens 6:3624

    Article  Google Scholar 

  • Barbier EB, Cox M (2004) An economic analysis of shrimp farm expansion and mangrove conversion in Thailand. Land Econ 80:391–407

    Article  Google Scholar 

  • Binh TNKD, Vromant N, Hung NT, Hens L, Boon EK (2005) Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau Peninsula, Vietnam. Environ Dev Sustain 7:519–536

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees, 1st edn. Chapman and Hall/CRC. ISBN: 978-0412048418

  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K (2017) A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw 95:229–245. https://doi.org/10.1016/j.envsoft.2017.06.012

    Article  Google Scholar 

  • Colkesen I, Kavzoglu T (2017) The use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery. Geocarto Int 32:71–86. https://doi.org/10.1080/10106049.2015.1128486

    Article  Google Scholar 

  • Conchedda G, Durieux L, Mayaux P (2008) An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS J Photogramm Remote Sens 63:578–589. https://doi.org/10.1016/j.isprsjprs.2008.04.002

    Article  Google Scholar 

  • Congalton RG, Green K (1999) Assessing the accuracy of remotely sensed data—principles and practices. Lewis Publishers, New York

    Google Scholar 

  • Daniel MA (2008) Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar Coast Shelf Sci 76:1–13

    Article  Google Scholar 

  • Darmawan S, Takeuchi W, Vetrita Y, Wikantika K, Sari DK (2015) Impact of topography and tidal height on ALOS PALSAR polarimetric measurements to estimate aboveground biomass of mangrove forest in Indonesia. J Sens 2015:13. https://doi.org/10.1155/2015/641798

    Article  Google Scholar 

  • Dat PT, Yoshino K (2013) Comparing mangrove forest management in Hai Phong City, Vietnam towards sustainable aquaculture. Proc Environ Sci 17:109–118. https://doi.org/10.1016/j.proenv.2013.02.018

    Article  Google Scholar 

  • de Leeuw MR, de Carvalho LMT (2009) Performance evaluation of several adaptive speckle filters for SAR imaging. Anais XIV Simpósio Brasileiro de Sensoriamento Remoto 7299–7305

  • de Souza Rocha, Pereira F, Kampel M, Cunha-Lignon M (2012) Mapping of mangrove forests on the southern coast of São Paulo, Brazil, using synthetic aperture radar data from ALOS/PALSAR. Remote Sens Lett 3:567–576. https://doi.org/10.1080/01431161.2011.641511

    Article  Google Scholar 

  • Doetsch P, Buck C, Golik P, Hoppe N, Kramp M, Laudenberg J, Oberdörfer C, Steingrube P, Forster J, Mauser A (2009) Logistic model trees with AUC split criterion for the KDD Cup 2009 small challenge. KDD Cup, pp 77–88

  • Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297

    Article  Google Scholar 

  • Foody GM (2004) Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogramm Eng Remote Sens 70:627–633

    Article  Google Scholar 

  • Friedl MA, Brodley CE (1997) Decision tree classification of land cover from remotely sensed data. Remote Sens Environ 61:399–409. https://doi.org/10.1016/S0034-4257(97)00049-7

    Article  Google Scholar 

  • Friedl MA, Brodley CE, Strahler AH (1999) Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Trans Geosci Remote Sens 37:969–977. https://doi.org/10.1109/36.752215

    Article  Google Scholar 

  • Frohn RC, Arellano-Neri O (2005) Improving artificial neural networks using texture analysis and decision trees for the classification of land cover. GISci Remote Sens 42:44–65. https://doi.org/10.2747/1548-1603.42.1.44

    Article  Google Scholar 

  • Giri C, Muhlhausen J (2008) Mangrove forest distributions and dynamics in Madagascar (1975–2005). Sensors 8:2104–2117

    Article  Google Scholar 

  • Hansen M, DeFries R, Townshend JR, Sohlberg R (2000) Global land cover classification at 1 km spatial resolution using a classification tree approach. Int J Remote Sens 21:1331–1364

    Article  Google Scholar 

  • Heumann BW (2011) An object-based classification of mangroves using a hybrid decision tree—support vector machine approach. Remote Sens 3:2440–2460

    Article  Google Scholar 

  • Hong PN (1991) Ecology of mangrove vegetation in Vietnam. Hanoi Pedagogic University

  • Hong PN, San HT (1993) Mangroves of Vietnam. IUCN, Bangkok, Thailand

  • Hue L (2008) Economic reforms and mangrove forests in central Vietnam. Soc Nat Resour 21:106–119. https://doi.org/10.1080/08941920701617775

    Article  Google Scholar 

  • JAXA (2014) ALOS-2/PALSAR-2 Level 1.1/1.5/2.1/3.1 CEOS SAR Product Japan Aerospace Exploration Agency

  • Jensen JR (1996) Introductory digital image processing: a remote sensing perspective. Prentice-Hall, New York

    Google Scholar 

  • Kauffman JB, Heider C, Norfolk J, Payton F (2013) Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol Appl 24:518–527. https://doi.org/10.1890/13-0640.1

    Article  Google Scholar 

  • Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn 59:161–205. https://doi.org/10.1007/s10994-005-0466-3

    Article  Google Scholar 

  • Li X, Gar-On Yeh A (2004) Data mining of cellular automata’s transition rules. Int J Geogr Inf Sci 18:723–744. https://doi.org/10.1080/13658810410001705325

    Article  Google Scholar 

  • Li M, Im J, Beier C (2013) Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. GISci Remote Sens 50:361–384. https://doi.org/10.1080/15481603.2013.819161

    Google Scholar 

  • Lim T-S, Loh W-Y, Shih Y-S (2000) A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach Learn 40:203–228. https://doi.org/10.1023/a:1007608224229

    Article  Google Scholar 

  • Liu K, Li X, Shi X, Wang S (2008) Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetlands 28:336–346. https://doi.org/10.1672/06-91.1

    Article  Google Scholar 

  • Long JB, Giri C (2011) Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors 11:2972–2981

    Article  Google Scholar 

  • Lu L, Di L, Ye Y (2014) A decision-tree classifier for extracting transparent plastic-mulched landcover from Landsat-5 TM images. IEEE J Sel Top Appl Earth Observ Remote Sens 7:4548–4558. https://doi.org/10.1109/JSTARS.2014.2327226

    Article  Google Scholar 

  • Lucas RM, Mitchell AL, Rosenqvist A, Proisy C, Melius A, Ticehurst C (2007) The potential of L-band SAR for quantifying mangrove characteristics and change: case studies from the tropics. Aquat Conserv Mar Freshw Ecosyst 17:245–264. https://doi.org/10.1002/aqc.833

    Article  Google Scholar 

  • Mazda Y, Magi M, Kogo M, Hong PN (1997) Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves Salt Marshes 1:127–135. https://doi.org/10.1023/a:1009928003700

    Article  Google Scholar 

  • Mazda Y, Magi M, Nanao H, Kogo M, Miyagi T, Kanazawa N, Kobashi D (2002) Coastal erosion due to long-term human impact on mangrove forests. Wetl Ecol Manag 10:1–9. https://doi.org/10.1023/a:1014343017416

    Article  Google Scholar 

  • Mishra P, Singh D, Yamaguchi Y (2011) Land cover classification of PALSAR images by knowledge based decision tree classifier and supervised classifiers based on SAR observables. Progr Electromagn Res B 30:47–70

    Article  Google Scholar 

  • Mountrakis G, Im J, Ogole C (2011) Support vector machines in remote sensing: a review. ISPRS J Photogramm Remote Sens 66:247–259. https://doi.org/10.1016/j.isprsjprs.2010.11.001

    Article  Google Scholar 

  • Myles AJ, Feudale RN, Liu Y, Woody NA, Brown SD (2004) An introduction to decision tree modeling. J Chemom 18:275–285. https://doi.org/10.1002/cem.873

    Article  Google Scholar 

  • Neumann J, Emanuel K, Ravela S, Ludwig L, Verly C (2015) Risks of coastal storm surge and the effect of sea level rise in the Red River delta, Vietnam. Sustainability 7:6553

    Article  Google Scholar 

  • Nguyen-Thanh S, Chi-Farn C, Ni-Bin C, Cheng-Ru C, Ly-Yu C, Bui-Xuan T (2015) Mangrove mapping and change detection in Ca Mau peninsula, Vietnam, using Landsat data and object-based image analysis. IEEE J Sel Top Appl Earth Observ Remote Sens 8:503–510. https://doi.org/10.1109/JSTARS.2014.2360691

    Article  Google Scholar 

  • Otukei JR, Blaschke T (2010) Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms. Int J Appl Earth Observ Geoinform 12(Suppl 1):S27–S31. https://doi.org/10.1016/j.jag.2009.11.002

    Article  Google Scholar 

  • Pal M, Mather PM (2003) An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens Environ 86:554–565. https://doi.org/10.1016/S0034-4257(03)00132-9

    Article  Google Scholar 

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    Google Scholar 

  • Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marbà N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7:e43542. https://doi.org/10.1371/journal.pone.0043542

    Article  Google Scholar 

  • Pham LTH, Brabyn L (2017) Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms. ISPRS J Photogramm Remote Sens 128:86–97. https://doi.org/10.1016/j.isprsjprs.2017.03.013

    Article  Google Scholar 

  • Pham TD, Yoshino K (2015) Mangrove mapping and change detection using multi-temporal landsat imagery in Hai Phong city, Vietnam. In: International symposium on cartography in internet and ubiquitous environments 2015, The University of Tokyo, Japan

  • Pham TD, Yoshino K (2016) Impacts of mangrove management systems on mangrove changes in the Northern Coast of Vietnam. Tropics 24:141–151. https://doi.org/10.3759/tropics.24.141

    Article  Google Scholar 

  • Pham TD, Yoshino K (2017) Aboveground biomass estimation of mangrove species using ALOS-2 PALSAR imagery in Hai Phong City, Vietnam. APPRES 11:026010. https://doi.org/10.1117/1.JRS.11.026010

    Article  Google Scholar 

  • Pham BT, Tien Bui D, Prakash I, Nguyen LH, Dholakia MB (2017a) A comparative study of sequential minimal optimization-based support vector machines, vote feature intervals, and logistic regression in landslide susceptibility assessment using GIS. Environ Earth Sci 76:371. https://doi.org/10.1007/s12665-017-6689-3

    Article  Google Scholar 

  • Pham TD, Yoshino K, Bui DT (2017b) Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. GISci Remote Sens 54:329–353. https://doi.org/10.1080/15481603.2016.1269869

    Article  Google Scholar 

  • Pham TD, Yoshino K, Kaida N (2018) Monitoring mangrove forest changes in cat ba biosphere reserve using ALOS PALSAR imagery and a GIS-based support vector machine algorithm. In: Tien Bui D, Ngoc Do A, Bui H-B, Hoang N-D (eds) Advances and applications in geospatial technology and earth resources: proceedings of the international conference on geo-spatial technologies and earth resources 2017. Springer, Cham, pp 103–118

  • Phan NH, Vu DT (2007) The role of mangroves in mitigating natural disasters. Annual report of FY 2006. The Core University Program between Japan Society for the Promotion of Science (JSPS) and Vietnamese Academy of Science and Technology (VAST) Osaka University, Japan, pp 147–155. http://hdl.handle.net/11094/13068. Accessed date 4 Sept 2017

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365. https://doi.org/10.1016/j.cageo.2012.08.023

    Article  Google Scholar 

  • Pradhan B, Tehrany MS, Jebur MN (2016) A new semiautomated detection mapping of flood extent from TerraSAR-X satellite image using rule-based classification and Taguchi optimization techniques. IEEE Trans Geosci Remote Sens 54:4331–4342. https://doi.org/10.1109/TGRS.2016.2539957

    Article  Google Scholar 

  • Pradhan B, Sameen MI, Kalantar B (2017) Optimized rule-based flood mapping technique using multitemporal RADARSAT-2 images in the tropical region. IEEE J Sel Top Appl Earth Observ Remote Sens. https://doi.org/10.1109/jstars.2017.2676343

    Google Scholar 

  • Qiu F, Berglund J, Jensen JR, Thakkar P, Ren D (2004) Speckle noise reduction in SAR imagery using a local adaptive median filter. GISci Remote Sens 41:244–266. https://doi.org/10.2747/1548-1603.41.3.244

    Article  Google Scholar 

  • Quinlan JR (1993) C4.5: Programming for machine learning. Morgan Kauffmann, Los Altos, p 38

    Google Scholar 

  • Sameen MI, Pradhan B, Shafri HZM, Mezaal MR, Hb Hamid (2017) Integration of ant colony optimization and object-based analysis for LiDAR data classification. IEEE J Sel Top Appl Earth Observ Remote Sens 10:2055–2066. https://doi.org/10.1109/JSTARS.2017.2650956

    Article  Google Scholar 

  • Seto KC, Fragkias M (2007) Mangrove conversion and aquaculture development in Vietnam: a remote sensing-based approach for evaluating the Ramsar Convention on Wetlands. Glob Environ Change 17:486–500

    Article  Google Scholar 

  • Sharma R, Ghosh A, Joshi P (2013) Decision tree approach for classification of remotely sensed satellite data using open source support. J Earth Syst Sci 122:1237

    Article  Google Scholar 

  • Shimada M, Isoguchi O, Tadono T, Isono K (2009) PALSAR radiometric and geometric calibration. IEEE Trans Geosci Remote Sens 47:3915–3932

    Article  Google Scholar 

  • Shiraishi T, Motohka T, Thapa RB, Watanabe M, Shimada M (2014) Comparative assessment of supervised classifiers for land use—land cover classification in a tropical region using time-series PALSAR mosaic data. IEEE J Sel Top Appl Earth Observ Remote Sens 7:1186–1199. https://doi.org/10.1109/JSTARS.2014.2313572

    Article  Google Scholar 

  • Stehman SV (1997) Selecting and interpreting measures of thematic classification accuracy. Remote Sens Environ 62:77–89. https://doi.org/10.1016/S0034-4257(97)00083-7

    Article  Google Scholar 

  • Tachikawa T, Kaku M, Iwasaki A, Gesch DB, Oimoen MJ, Zhang Z, Danielson JJ, Krieger T, Curtis B, Haase J (2011) ASTER global digital elevation model version 2-summary of validation results. NASA

  • Thomas N, Lucas R, Bunting P, Hardy A, Rosenqvist A, Simard M (2017) Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12:e0179302

    Article  Google Scholar 

  • Tien Bui D, Tuan TA, Klempe H, Pradhan B, Revhaug I (2016) Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 13:361–378. https://doi.org/10.1007/s10346-015-0557-6

    Article  Google Scholar 

  • Tien Bui D, Tuan TA, Hoang N-D, Thanh NQ, Nguyen DB, Van Liem N, Pradhan B (2017) Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization. Landslides 14:447–458. https://doi.org/10.1007/s10346-016-0711-9

    Article  Google Scholar 

  • Tien Dat P, Kunihiko Y (2016) Characterization of mangrove species using ALOS-2 PALSAR in Hai Phong city, Vietnam. IOP Conf Ser Earth Environ Sci 37:012036

    Article  Google Scholar 

  • Tien Dat P, Yoshino K (2012) Mangrove analysis using ALOS imagery in Hai Phong City, Vietnam. https://doi.org/10.1117/12.977261

  • Tuan LX, Munekage Y, Dao QTQ, Tho NH, Dao PTA (2003) Environmental management in mangrove areas. Environ Inf Arch 1:38–52

    Google Scholar 

  • Valiela I, Bowen JL, York JK (2001) Mangrove forests: one of the world’s threatened major tropical environments at least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 51:807–815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2

    Article  Google Scholar 

  • Vieira MA, Formaggio AR, Rennó CD, Atzberger C, Aguiar DA, Mello MP (2012) Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sens Environ 123:553–562. https://doi.org/10.1016/j.rse.2012.04.011

    Article  Google Scholar 

  • Wang L, Silván-Cárdenas JL, Sousa WP (2008) Neural network classification of mangrove species from multi-seasonal Ikonos imagery. Photogramm Eng Remote Sens 74:921–927. https://doi.org/10.14358/PERS.74.7.921

    Article  Google Scholar 

  • Yang C-C, Prasher SO, Enright P, Madramootoo C, Burgess M, Goel PK, Callum I (2003) Application of decision tree technology for image classification using remote sensing data. Agric Syst 76:1101–1117. https://doi.org/10.1016/S0308-521X(02)00051-3

    Article  Google Scholar 

  • Zhang X, Treitz PM, Chen D, Quan C, Shi L, Li X (2017) Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure. Int J Appl Earth Obs Geoinf 62:201–214. https://doi.org/10.1016/j.jag.2017.06.010

    Article  Google Scholar 

  • Zhao Y, Zhang Y (2008) Comparison of decision tree methods for finding active objects. Adv Space Res 41:1955–1959. https://doi.org/10.1016/j.asr.2007.07.020

    Article  Google Scholar 

  • Zhong H, Li Y, Jiao L (2011) SAR image despeckling using bayesian nonlocal means filter with sigma preselection. IEEE Geosci Remote Sens Lett 8:809–813. https://doi.org/10.1109/LGRS.2011.2112331

    Article  Google Scholar 

  • Zhu HM, Zhong WQ, Jiao LC (2013) Combination of target detection and block-matching 3D filter for despeckling SAR images. Electron Lett 49:495–497. https://doi.org/10.1049/el.2012.3160

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CARES (Centre for Agricultural Researches and Ecological Studies) of Vietnam National University of Agriculture (VNUA), Vietnam, for providing spatial data for this research and logistical support during the fieldwork of this research. We are highly thankful to MEXT (Ministry of Education, Culture, Sports, Science, and Technology) of the Japanese Government for financial support to pursue a Ph.D. degree at the University of Tsukuba, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien Dat Pham.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pham, T.D., Bui, D.T., Yoshino, K. et al. Optimized rule-based logistic model tree algorithm for mapping mangrove species using ALOS PALSAR imagery and GIS in the tropical region. Environ Earth Sci 77, 159 (2018). https://doi.org/10.1007/s12665-018-7373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7373-y

Keywords

  • ALOS PALSAR
  • Hai Phong City
  • Mangrove species
  • Decision tree GIS
  • Logistic model tree