Advertisement

Comparative modelling of the coupled thermal–hydraulic-mechanical (THM) processes in a heated bentonite pellet column with hydration

  • B. J. GraupnerEmail author
  • H. Shao
  • X. R. Wang
  • T. S. Nguyen
  • Z. Li
  • J. Rutqvist
  • F. Chen
  • J. Birkholzer
  • W. Wang
  • O. Kolditz
  • P. Z. Pan
  • X. T. Feng
  • C. Lee
  • K. Maekawa
  • S. Stothoff
  • C. Manepally
  • B. Dasgupta
  • G. Ofoegbu
  • R. Fedors
  • J. D. Barnichon
  • E. Ballarini
  • S. Bauer
  • B. Garitte
Thematic Issue
Part of the following topical collections:
  1. DECOVALEX 2015

Abstract

For the deep geological disposal of high-level radioactive waste in argillaceous rocks, the heat production of the waste is an important driver for thermal–hydraulic-mechanical (THM)-coupled processes. These THM processes influence the properties and conditions of the near field that in many repository designs contains bentonite as a clay buffer. One task in the DECOVALEX-2015 (DEvelopment of COupled models and their VALidation against Experiments) project was the modelling of a heated bentonite column (Villar et al. in Long-term THM tests reports: THM cells for the HE-E test: update of results until February 2014. Deliverable-no: D2.2-7.3. CIEMAT Technical Report IEMAT/DMA/2G210/03/2014, 2014) in preparation for the in situ heater experiment HE-E at the underground rock laboratory Mont Terri. DECOVALEX is an international cooperative project that focuses on the development and validation of mathematical models for simulating such coupled processes associated with disposal in deep geological repositories. Eight modelling teams developed their own THM-coupled models for the bentonite column experiment, using six different simulation codes. Each of the teams individually calibrated the THM parameters for the bentonite material. The eight resulting parameter sets agree well and allow a satisfactory reproduction of the TH measurements by all models. The modelling results for the evolution of temperature and relative humidity over time at three sensors in the bentonite column are in good agreement between the teams and with the measured data. Also, changes of the temperature due to modifications of the insulation and the adjustment of the heating power during the course of the experiment are well reproduced. The models were thus able to reproduce the main physical processes of the experiment, both for vapour-dominated diffusion during the heating phase and combined liquid and vapour transport during a subsequent heating and hydration phase. Based on the parameter sets, the teams predict a penetration of the water infiltration front in the 48-cm column filled with bentonite pellets to a depth between 25 and 35 cm over the 15,000 h (i.e. over 20 months) of the hydration phase of the experiment.

Keywords

Mont Terri Clay rock Bentonite Heater experiment Coupled THM processes 

Notes

Acknowledgements

The members of Task B1 express their thanks for the financial support provided by the Funding Organisations of the DECOVALEX-2015 project, and for measured data from experiments supplied by the EU-PEBS project. CAS team’s work was financially supported by international cooperation project of Chinese Academy of Sciences (Nos. 115242KYSB20160017, 115242KYSB20160024). CAU was financially supported by ENSI. The statements made in the paper are, however, solely those of the authors and do not necessarily reflect those of Funding Organisation(s). Also, no responsibility is assumed by the authors for any damage to property or persons as a result of operation or use of this publication and/or the information contained. The views expressed herein do not necessarily reflect the views or regulatory positions of the U.S. Nuclear Regulatory Commission (USNRC), and do not constitute a final judgment or determination of the matters addressed or of the acceptability of any licensing action that may be under consideration at the USNRC.

References

  1. Armand G (2015) Task proposal for the international DECOVALEX-2019 project, Nov. 2015, Wakkanai, JapanGoogle Scholar
  2. Ballarini E, Graupner B, Bauer S (2017) Thermal–hydraulic–mechanical behavior of bentonite and sand-bentonite materials as seal for a nuclear waste repository: numerical simulation of column experiments. Appl Clay Sci 135:289–299.  https://doi.org/10.1016/j.clay.2016.10.007 CrossRefGoogle Scholar
  3. Garitte B, Nguyen S, Barnichon JD, Graupner B, Lee L, Maekawa K, Ofoegbu G, Manepally C, Dasgupta B, Fedors R, Pan P, Feng XT, Rutqvist J, Chen F, Birkholzer J, Wang W, Kolditz O, Shao H (2016) Modelling the Mont-Terri HE-D experiment for the thermal–hydraulic–mechanical response of a bedded argillaceous formation to heating. Submitted to Environmental Earth SciencesGoogle Scholar
  4. Garitte B, Shao H, Wang XR, Nguyen TS, Li Z, Rutqvist J, Birkholzer J, Wang WQ, Kolditz O, Pan PZ, Feng XT, Lee C, Graupner BJ, Maekawa K, Manepally C, Dasgupta B, Stothoff S, Ofoegbu G, Fedors R, Barnichon JD (2017) Evaluation of the predictive capability of coupled thermo-hydro-mechanical models for a heated bentonite/clay system (HE-E) in the Mont Terri Rock Laboratory. Environ Earth Sci 76:64.  https://doi.org/10.1007/s12665-016-6367-x CrossRefGoogle Scholar
  5. Gaus I, Wieczorek K, Schuster K, Garitte B, Senger R, Vasconcelos R, Mayor JC (2014a) EBS behaviour immediately after repository closure in a clay host rock: HE-E experiment (Mont Terri URL). Geol Soc Spec Publ.  https://doi.org/10.1144/SP400.11 Google Scholar
  6. Gaus I, Garitte B, Senger R, Gens A, Vasconcelos R, Garcia-Sineriz JL, Trick T, Wieczorek K, Czaikowski O, Schuster K, Mayor JC, Velasco M, Kuhlmann U, Villar MV (2014b). The HE-E Experiment: lay-out, interpretation and THM modelling. Nagra Arbeitsbericht NAB pp 14–53Google Scholar
  7. Hoffmann C, Alonso EE, Romero E (2007) Hydro-mechanical behaviour of bentonite pellet mixtures. Phys Chem Earth 32:832–849CrossRefGoogle Scholar
  8. Itasca (2012) FLAC3D (fast Lagrangian analysis of continua in 3 dimensions), Version 5.0. Itasca Consulting Group, MinneapolisGoogle Scholar
  9. Itasca Consulting Group (2011) FLAC V 7.0, fast Lagrangian analysis of continua, user’s guide. Itasca Consulting Group, MinneapolisGoogle Scholar
  10. Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. In: Drilling and production practice, American Petroleum Institute, pp 200–213Google Scholar
  11. Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinformatics 6:225–244Google Scholar
  12. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589–599.  https://doi.org/10.1007/s12665-012-1546-x CrossRefGoogle Scholar
  13. McWhorter DB, Sunada DK (1990) Exact integral solutions for two-phase flow. Water Resour Res 26(3):399–413CrossRefGoogle Scholar
  14. Müller HR, Weber HP, Koehler S, Vogt T (2012) The full-scale emplacement (FE) experiment at the Mont Terri Rock Laboratory. Clays in natural and engineered barriers for radioactive waste confinement. In: 5th International meeting, book of abstracts (p. 923). FranceGoogle Scholar
  15. Nguyen S, Li Z, Garitte B, Barnichon JD (2016) Modelling a heater experiment for radioactive waste disposal. ICE Environmental Geotechnics. In pressGoogle Scholar
  16. Ohnishi Y, Shibata H, Kobayashi A (1985) Development of finite element code for the analysis of coupled thermo-hydro-mechanical behaviors of a saturated–unsaturated medium. In: Proc. of int. symp. on coupled process affecting the performance of a nuclear waste repository, Berkeley, pp 263–268Google Scholar
  17. Pan PZ, Feng XT (2013) Numerical study on coupled thermo-mechanical processes in Äspö Pillar stability experiment. J Rock Mech Geotech Eng 5(2):136–144CrossRefGoogle Scholar
  18. Pan PZ, Feng XT, Hudson JA (2009a) Study of failure and scale effects in rocks under uniaxial compression using 3D cellular automata. Int J Rock Mech Min Sci 46(4):674–685CrossRefGoogle Scholar
  19. Pan PZ, Feng XT, Huang XH, Cui Q, Zhou H (2009b) Coupled THM processes in EDZ of crystalline rocks using an elasto–plastic cellular automaton. Environ Geol 57(6):1299–1311CrossRefGoogle Scholar
  20. Pearson FJ, Arcos D, Bath A, Boisson JY, Fernández AM, Gäbler HE, Gaucher E, Gautschi A, Griffault L, Hernán P, Waber HN (2003). Geochemistry of water in the Opalinus clay formation at the Mont Terri Laboratory, Mont Terri Project, TN 2003-03, SWISSTOPOGoogle Scholar
  21. Rizzi M, Seiphoori A, Ferrari A, Ceresetti D, Laloui L (2012) Analysis of the behaviour of the granular MX-80 bentonite in THM-processes. Aktennotiz AN 12-102Google Scholar
  22. Rutqvist J, Wu Y-S, Tsang C-F, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39:429–442CrossRefGoogle Scholar
  23. Rutqvist J, Zheng L, Chen F, Liu H-H, Birkholzer J (2014) Modeling of coupled thermo-hydro-mechanical processes with links to geochemistry associated with bentonite-backfilled repository tunnels in clay formations. Rock Mech Rock Eng 47:167–186CrossRefGoogle Scholar
  24. Seiphoori A (2015) Thermo-hydro-mechanical characterisation and modelling of Wyoming granular bentonite. Nagra technical report 15-05Google Scholar
  25. Stothoff S, Painter S (2016) xFlo version 1.1 user’s manual DECOVALEX-2015 version; NRC ADAMS accession no. ML16167A315. San Antonio, Texas: Center for Nuclear Waste Regulatory AnalysesGoogle Scholar
  26. Stothoff S, Manepally C, Ofoegbu G, Dasgupta B, Fedors R (2015) Modeling thermohydrological-mechanical behavior of granular bentonite in a laboratory column test. NRC ADAMS accession no. ML15324A128. San Antonio, Texas: Center for Nuclear Waste Regulatory AnalysesGoogle Scholar
  27. Tang AM, Cui YJ (2006) Determining the thermal conductivity of compacted MX80 clay, unsaturated soils 2006. Reston, VirginiaGoogle Scholar
  28. Tang AM, Cui YJ (2010) Effects of mineralogy on thermo-hydro-mechanical parameters of MX80 bentonite. J Rock Mech Geotech Eng 2(1):91–96Google Scholar
  29. Villar MV (2005) MX-80 bentonite. Thermo-hydro-mechanical characterization performed at CIEMAT in the context of the prototype project. Informes Técnicos Ciemat 1053 Febrero, 2005. Departamento de Impacto Ambiental de la EnergíaGoogle Scholar
  30. Villar MV (2013) PEBS project: long term THM tests reports: isothermal infiltration tests with materials from the HE-E (deliverable no: D2.2-7.2)Google Scholar
  31. Villar MV, Martín PL, Gómez-Espina R, Romero FJ, Barcala JM (2012) THM cells for the HE-E test: setup and first results. PEBS report D2.2.7a. CIEMAT technical report CIEMAT/DMA/2G210/02/2012. Madrid, p 34Google Scholar
  32. Villar MV, Martín PL, Romero FJ (2014) Long-term THM tests reports: THM cells for the HE-E test: update of results until February 2014. Deliverable-no: D2.2-7.3. CIEMAT technical report IEMAT/DMA/2G210/03/2014Google Scholar
  33. Wang Q, Tang AM, Cui YJ, Delage P, Gatmiri B (2012) Experimental study on the swelling behaviour of bentonite/claystone mixture. Eng Geol 124(2012):59–66.  https://doi.org/10.1016/j.engeo.2011.10.003 CrossRefGoogle Scholar
  34. Wang X, Shao H, Wang W, Hesser J, Kolditz O (2015) Numerical modelling of heating and hydration experiments on bentonite pellets. Eng Geol 198:94–106CrossRefGoogle Scholar
  35. Wieczorek K, Miehe R, Garitte B (2011). Measurement of thermal parameters of the HE-E buffer materials. Deliverable (D-No: 2.2-5) PEBS (contract number: FP7 249681)Google Scholar
  36. Wieczorek K, Miehe R, Garitte B (2013) Thermal characterisation of HE-E buffer. Deliverable (D-No: 2.2-9) PEBS (contract number: FP7 249681)Google Scholar
  37. Wileveau Y (2005) THM behaviour of host rock (HE-D experiment): progress report September 2003–October 2004. Mont Terri technical report TR2005-03Google Scholar
  38. Wileveau Y, Su K (2007) In situ thermal experiment carried out in Opalinus clay and Callovo-Oxfordian claystones by Andra—experiment set-up and measurement results. ANDRA report, Paris, p 2007Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. J. Graupner
    • 1
    Email author
  • H. Shao
    • 2
  • X. R. Wang
    • 2
  • T. S. Nguyen
    • 3
  • Z. Li
    • 3
  • J. Rutqvist
    • 4
  • F. Chen
    • 4
  • J. Birkholzer
    • 4
  • W. Wang
    • 5
  • O. Kolditz
    • 5
  • P. Z. Pan
    • 6
  • X. T. Feng
    • 6
  • C. Lee
    • 7
  • K. Maekawa
    • 8
  • S. Stothoff
    • 9
  • C. Manepally
    • 9
  • B. Dasgupta
    • 9
  • G. Ofoegbu
    • 9
  • R. Fedors
    • 10
  • J. D. Barnichon
    • 11
  • E. Ballarini
    • 12
  • S. Bauer
    • 12
  • B. Garitte
    • 13
  1. 1.Swiss Federal Nuclear Safety Inspectorate (ENSI)BruggSwitzerland
  2. 2.Federal Institute for Geosciences and Natural Resources (BGR)HanoverGermany
  3. 3.Canadian Nuclear Safety Commission (CNSC)OttawaCanada
  4. 4.Lawrence Berkeley National Laboratory (LBNL)BerkeleyUSA
  5. 5.Helmholtz Centre for Environmental Research (UFZ)LeipzigGermany
  6. 6.State Key Laboratory of Geomechanics and Geotechnical EngineeringInstitute of Rock and Soil Mechanics, Chinese Academy of Sciences (CAS)WuhanChina
  7. 7.Korea Atomic Energy Research Institute (KAERI)DaejeonSouth Korea
  8. 8.Japan Atomic Energy Agency (JAEA)TokyoJapan
  9. 9.Center for Nuclear Waste Regulatory Analyses (CNWRA)RockvilleUSA
  10. 10.Nuclear Regulatory Commission (NRC)RockvilleUSA
  11. 11.Institute for Radiological Protection and Nuclear Safety (IRSN)ParisFrance
  12. 12.Institute of Geosciences, University of KielKielGermany
  13. 13.National Cooperative for the Disposal of Radioactive Waste (NAGRA)WettingenSwitzerland

Personalised recommendations