Skip to main content

Advertisement

Log in

Hydrochemistry of shallow groundwater and springs used for potable supply in Southern Brazil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Landscape characteristics and access type may exert a strong influence on groundwater quality, thereby adversely affecting human health. The aim of this study was to evaluate groundwater quality in springs and shallow wells of rural areas in terms of hydrochemical properties and different water quality indexes by comparing distinct microregions, groundwater sources (springs and shallow wells), and surrounding properties (e.g., presence of livestock, presence of fences, other protection structures, and restrictions on human access). Physical–chemical, chemical, and microbiological parameters were analyzed over 12 months between 2013 and 2014 in the Marombas River basin located in Santa Catarina State, Southern Brazil. Land use and landforms played an important role in controlling groundwater hydrochemistry in rural areas. The type of groundwater source (springs or shallow wells) did not influence water quality, although springs tended to be more susceptible to bacterial contamination, especially in areas with livestock in the surroundings. Chemical relationships allowed classifying these waters as predominantly calcium–magnesium bicarbonate or calcium–magnesium chloride, the latter being the most common in the study region. Groundwater was acidic, with low dissolved salt content, large range in dissolved oxygen concentrations, low turbidity, and presence of fecal coliforms in most studied months. Results indicate that water might be affected by septic tank leakage associated with wastewater and output from agricultural fields, given precarious installation and conservation conditions of springs and shallow wells in this region. When comparing the results with drinking water standards established by Brazilian Health Ministry, 70% of springs and shallow wells were found not suitable for consumption, especially due to organoleptic properties, high aluminum concentrations, and presence of fecal coliforms. Water quality indexes demonstrated that groundwater is suitable for agricultural uses (irrigation, livestock, and fish farming) and drinking, if treated via disinfection, filtering, or boiling before consumption. Nevertheless, use of this water resource, especially without any treatment—as is currently common among users—raises concerns related to its susceptibility to spread waterborne diseases, and lack of information among water users regarding procedures to improve water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbasi T, Abbasi AS (2012) Water quality indices, 1st edn. Elsevier, Oxford

    Google Scholar 

  • Ahada CP, Suthar S (2017) Hydrochemistry of groundwater in North Rajasthan, India: chemical and multivariate analysis. Environ Earth Sci 76:203

    Article  Google Scholar 

  • Ako AA, Shimada J, Hosono T, Ichiyanagi K, Nkeng GE, Fantong WY, Eyong GE, Roger NN (2011) Evaluation of groundwater quality and its suitability for drinking, domestic, and agricultural uses in the Banana Plain (Mbanga, Njombe, Penja) of the Cameroon Volcanic Line. Environ Geochem Health 33:559–575

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Andrade EM, Palácio HAQ, Souza IH, de Oliveira Leão RA, Guerreiro MJ (2008) Land use effects in groundwater composition of an alluvial aquifer (Trussu River, Brazil) by multivariate techniques. Environ Res 106:170–177

    Article  Google Scholar 

  • Anzecc A (2000) Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Canberra, pp 1–103

  • APHA—American Public Health Association (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington

    Google Scholar 

  • Berner EK, Berner RA (1995) Global environment: water, air, and geochemical cycles, 1st edn. Prentice Hall, Englewood

    Google Scholar 

  • Bertossi APA, Cecílio RA, Neves MA, Garcia GO (2013) Qualidade da água em microbacias hidrográficas com diferentes coberturas do solo no sul do Espírito Santo. Rev Arvore 37:107–117

    Article  Google Scholar 

  • Bhattacharjee S, Zhao Y, Hill JM, Percy ME, Lukiw WJ (2014) Aluminum and its potential contribution to Alzheimer’s disease (AD). Front Aging Neurosci 6:62

    Google Scholar 

  • Bhattacharjya H, Das SK, Majumder T, Mukhopadhyay BB, Baidya S, Debbarman DK (2017) Bacteriological quality of water and diarrhoea among ethnic and non-ethnic communities of rural area of West Tripura, India. Int J Res Med Sci 5:1275–1281

    Article  Google Scholar 

  • BRAZIL. Ministry of Health. Ordinance no 2.914, 12 December 2011. Dispõe sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. http://www.cvs.saude.sp.gov.br/zip/Portaria_MS_2914-11.pdf/. Accessed 10 March 2017

  • Cardoso FBF, Oliveira FR, Varella Neto PL, Ranielle NP (2007) Mapa dos domínios hidrogeológicos de Santa Catarina: uma ferramenta para gestão das águas subterrâneas do estado. In: XV Encontro Nacional de Perfuradores de Poços e I Simpósio de Hidrogeologia Sul-Sudeste. Brazilian Association of Groundwater/ABAS, Gramado

  • Celligoi A (1999) Considerações sobre análises químicas de águas subterrâneas. Geografia 8:91–97

    Google Scholar 

  • CETESB—Companhia de Tecnologia de Saneamento Ambiental (2008) Relatório de Qualidade das Águas Interiores do Estado de São Paulo. Secretary of State for Environment, São Paulo

    Google Scholar 

  • Colvara JG, Lima AS, Silva WP (2009) Avaliação da contaminação de água subterrânea em poços artesianos no sul de Rio Grande do Sul. Braz J Food Technol 2:11–14

    Google Scholar 

  • Custodio E, Llamas MR (1983) Hidrologia subterrânea, 2nd edn. Editora Omega, Barcelona

    Google Scholar 

  • Di Bernardo L, Dantas ADB (2005) Métodos e técnicas de tratamento de água, 2nd edn. RIMA, Rio de Janeiro

    Google Scholar 

  • EMBRAPA (2004) Solos do Estado de Santa Catarina (Boletim de desenvolvimento e pesquisa). Embrapa Solos—CNPS, Rio de Janeiro

  • EPAGRI/CEPA (2017) Síntese Anual da Agricultura de Santa Catarina 2012–2013. http://docweb.epagri.sc.gov.br/website_cepa/publicacoes/sintese_2013.pdf/. Accessed 23 Oct 2017

  • Esrey SA, Habicht JP (1986) Epidemiologic evidence for health benefits from improved water and sanitation in developing countries. Epidemiol Rev 8:117–128

    Article  Google Scholar 

  • Friendly M, Fox J (2016) Candisc: visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.7-0. https://CRAN.R-project.org/package=candisc

  • Giordano M, Villholth KG (2007) The agricultural groundwater revolution: opportunities and threats to development, vol 3. CABI, Wallingford

    Book  Google Scholar 

  • Giridharan L, Venugopal T, Jayaprakash M (2008) Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of River Cooum, Chennai, India. Environ Monit Assess 143:161–178

    Article  Google Scholar 

  • Gutchess K, Jin L, Lautz L, Shaw SB, Zhou X, Lu Z (2016) Chloride sources in urban and rural headwater catchments, central New York. Sci Total Environ 565:462–472

    Article  Google Scholar 

  • Heckman CW, Dos Campos JLE, Hardoim EL (1997) Nitrite concentration in well water from Poconé, Mato Grosso, and its relationship to public health in rural Brazil. Bull Environ Contam Toxicol 58:8–15

    Article  Google Scholar 

  • IBGE—Instituto Brasileiro de Geografia e Estatística. Pesquisa Nacional de Saneamento Básico (2000). http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/pnsb/pnsb.pdf/. Accessed 23 Oct 2017

  • Idrus AS, Fauziah MN, Hani MH, Wan Rohaila WA, Wan Mansor H (2014) Status of groundwater contamination in rural area, Kelantan. IOSR J Environ Sci Toxicol Food Technol 8:72–80

    Google Scholar 

  • Jalali M (2011) Hydrogeochemistry of groundwater and its suitability for drinking and agricultural use in Nahavand, Western Iran. Nat Resour Res 20:65–73

    Article  Google Scholar 

  • Kalff J (2002) Limnology. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Keesstra SD, Geissen V, Mosse K, Piiranen S, Scudiero E, Leistra M, van Schaik L (2012) Soil as a filter for groundwater quality. Curr Opin Environ Sustain 4:507–516

    Article  Google Scholar 

  • Knobeloch L, Gorski P, Christenson M, Anderson H (2013) Private drinking water quality in rural Wisconsin. J Environ Health 75:16–20

    Google Scholar 

  • Krishnakumar P, Lakshumanan C, Kishore VP, Sundararajan M, Santhiya G, Chidambaram S (2014) Assessment of groundwater quality in and around Vedaraniyam, South India. Environ Earth Sci 71:2211

    Article  Google Scholar 

  • Kulabako NR, Nalunega M, Thuhunvik R (2007) Study of the impact of land use and hydrogeological settings on the shallow groundwater quality in a peri-urban area of Kampala, Uganda. Sci Total Environ 381:180–199

    Article  Google Scholar 

  • Lautz LK, Hoke GD, Lu Z, Siegel DI, Christian K, Kessler JD, Teale NG (2014) Using discriminant analysis to determine sources of salinity in shallow groundwater prior to hydraulic fracturing. Environ Sci Technol 48:9061–9069

    Article  Google Scholar 

  • Leite NK, Krusche AV, Cabiachi GM, Ballester MVR, Victoria RL, Marchetto M, Santos JG (2011) Groundwater quality comparison between rural farms and riparian wells in the western Amazon, Brazil. Quim Nova 34:11–15

    Article  Google Scholar 

  • Lerner DN, Harris B (2009) The relationship between land use and groundwater resources and quality. Land Use Policy 26S:S265–S273

    Article  Google Scholar 

  • Li P (2016) Groundwater quality in Western China: challenges and paths forward for groundwater quality research in Western China. Expo Health 8(3):305–310

    Article  Google Scholar 

  • Li P, Qian H, Wu J (2010) Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, Northwest China. E J Chem 7(S1):S209–S216

    Article  Google Scholar 

  • Li P, Wu J, Qian H (2012) Groundwater quality assessment based on rough sets attribute reduction and TOPSIS method in a semi-arid area, China. Environ Monit Assess 184(8):4841–4854

    Article  Google Scholar 

  • Li P, Wu J, Qian H (2013) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ Earth Sci 69(7):2211–2225

    Article  Google Scholar 

  • Li P, Wu J, Qian H, Lyu X, Liu H (2014) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36(4):693–712

    Article  Google Scholar 

  • Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P (2016) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, Northwest China. Expo Health 8(3):331–348

    Article  Google Scholar 

  • Li P, Tian R, Xue C, Wu J (2017) Progress, opportunities and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Pollut Res 24(15):13224–13234

    Article  Google Scholar 

  • Lopes CRM, Dias FWC, Cavalgante IN, De Souza AKP (2001) Hidrogeologia do município de Juazeiro do Norte, Estado do Ceará. XII Encontro Nacional de Perfuradores de Poços. ABAS, São Paulo

    Google Scholar 

  • Machado JLF (2013) Hydrogeological map of Santa Catarina State. Geological Survey of Brazil, Porto Alegre

    Google Scholar 

  • Mackintosh G, Colvin C (2003) Failure of rural schemes in South Africa to provide potable water. Environ Geol 44:101–105

    Google Scholar 

  • Manoel Filho J (2000) Contaminação das águas subterrâneas. In: Feitosa FAC, Manoel Filho J (eds) Hidrogeologia: Conceitos e Aplicações, 2nd edn. CPRM/REFO, LABHID-UFPE, Fortaleza, pp 109–132

    Google Scholar 

  • Matthess G (1982) The properties of groundwater. Wiley, New York

    Google Scholar 

  • Mellander PE, Melland AR, Murphy PNC, Wall DP, Shortle G, Jordan P (2014) Coupling of surface water and groundwater nitrate-N dynamics in two permeable agricultural catchments. J Agric Sci 152:107–124

    Article  Google Scholar 

  • Mohammadi F, Ehteshami M, Mirbagheri SA, Tavassoli S (2017) Monitoring groundwater and its suitability for drinking and irrigation purposes in the Sharif Abad Basin, Central Iran. World J Eng Technol 5:487–506

    Article  Google Scholar 

  • National Water Agency (NWA) (2011) Guia de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. CETESB, São Paulo

    Google Scholar 

  • National Water Agency (NWA) (2017) Hydrological information system. http://hidroweb.ana.gov.br/HidroWeb. Accessed 1 Mar 2017

  • Nunes AP, Lopes LG, Pinto FR, Amaral LA (2010) Qualidade da água subterrânea e percepção dos consumidores em propriedades rurais. Nucleus 7:95–104

    Google Scholar 

  • Odagiri M, Schriewer A, Daniels ME, Wuertz S, Smith WA, Clasen T, Schmidt WP, Jin Y, Torondel B, Misra PR, Panigrahi P, Jenkins MW (2016) Human fecal and pathogen exposure pathways in rural Indian villages and the effect of increased latrine coverage. Water Res 100:232–244

    Article  Google Scholar 

  • Oliveira IB, Negrão FI, Silva AGLS (2007) Mapeamento dos Aquíferos do Estado da Bahia utilizando o Índice de Qualidade Natural das Águas Subterrâneas—IQNAS. Rev Cient Agua Subter 21:123–137

    Google Scholar 

  • Piper AM (1944) A graphical procedure in the geochemical interpretation of water analysis. Trans Am Geophys Union 25:914–928

    Article  Google Scholar 

  • Poonam T, Tanushree B, Sukalyan C (2013) Water quality indices—important tools for water quality assessment: a review. Int J Adv Chem 1:15–28

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rao NS (2006) Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India. Environ Geol 49:413–429

    Article  Google Scholar 

  • Rebouças AC, Amore L (2002) O Sistema Aqüifero Guarani—SAG. Rev Águas Sub 16:135–143

    Google Scholar 

  • Rietveld LC, Haarhoff J, Jagals P (2009) A tool for technical assessment of rural water supply systems in South Africa. Phys Chem Earth 34:43–49

    Article  Google Scholar 

  • Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF (2000) Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study. Am J Epidemiol 152:59–66

    Article  Google Scholar 

  • Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues JF (2009) Aluminum and silica in drinking water and the risk of Alzheimer’s disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol 169:489–496

    Article  Google Scholar 

  • Sadeghi GH, Mohammadian M, Nourani M, Peyda M, Eslami A (2007) Microbiological quality assessment of rural drinking water supplies in Iran. J Agric Soc Sci 3:31–33

    Google Scholar 

  • Saeedi M, Abessi O, Sharifi F, Meraji H (2010) Development of groundwater quality index. Environ Monit Assess 163:327–335

    Article  Google Scholar 

  • Santos AC (2008) Noções de Hidroquímica. In: Feitosa FAC, Manoel Filho J (eds) Hidrogeologia: Conceitos e Aplicações, 3rd edn. CPRM/REFO, LABHID-UFPE, Fortaleza, pp 81–107

    Google Scholar 

  • Santos LV, Polivanov H, Alamino RCJ, Silva VHG (2006) Adsorção de cloreto e potássio em solos tropicais. Anu Inst Geo UFRJ 29:101–121

    Google Scholar 

  • Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Change Biol 11:1577–1593

    Article  Google Scholar 

  • Silva FOE, Heikkila T, Souza Filho FDA, Costa da Silva D (2013) Developing sustainable and replicable water supply systems in rural communities in Brazil. Int J Water Resour D 29:622–635

    Article  Google Scholar 

  • Sjöström J (1994) Aluminium and sulphate in acidic soils and groundwaters on the Swedish west coast. Water Air Soil Pollut 75:127–139

    Article  Google Scholar 

  • Srinivasamoorthy K, Gopinath M, Chidambaram S, Vasanthavigar M, Sarma VS (2014) Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. JKSUS 26:37–52

    Google Scholar 

  • Szikszay M (1993) Geoquímica das águas. Boletim IG-USP. Série Didática no 5

  • Taiwo AM, Towolawi AT, Olanigan AA, Olujimi OO, Arowolo TA (2015) Comparative assessment of groundwater quality in rural and urban areas of Nigeria. In research and practices in water quality. In: Lee TS (ed) Research and practices in water quality. InTech, London, pp 179–191

    Google Scholar 

  • Ten Caten A, Safanelli JL, Ruiz LFC (2015) Mapeamento multitemporal da cobertura de terra, por meio de árvore de decisão, na bacia hidrográfica do rio Marombas-SC. Eng Agric 35:1198–1209

    Google Scholar 

  • Tomodiatounga DN, Mabiala B, Nkaya GM (2016) Hydrochemical characteristics of the groundwater AQ1 of the region from Pointe-Noire to Congo Brazzaville. J Geosci Environ Prot 4:95

    Google Scholar 

  • US Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils. USDA Agricultural Handbook No. 60. U.S. Government Printing Office. Washington, DC

  • Varol S, Davraz A (2015) Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: a case study of the Tefenni plain (Burdur/Turkey). Environ Earth Sci 73:1725–1744

    Article  Google Scholar 

  • Venkatramanan S, Chung SY, Ramkumar T, Gnanachandrasamy G, Vasudevan S (2013) A multivariate statistical approaches on physicochemical characteristics of ground water in and around Nagapattinam district, Cauvery deltaic region of Tamil Nadu, India. Earth Sci Res J 17:97–103

    Google Scholar 

  • Wada Y, van Beek LPH, van Kempen CM, Reckman JWTM, Vasak S, Bierkens MFP (2010) Global depletion of groundwater resources. Geophys Res Lett 37:L20402

    Article  Google Scholar 

  • World Health Organization (WHO) (2011) Guidelines for drinking-water quality. Health criteria and other supporting information. WHO, Geneva

    Google Scholar 

  • World Quality Association (WQA) (2017) The glossary of salt water. Published by the Water Quality Association. https://www.wqa.org/

  • Wu J, Sun Z (2016) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health 8(3):311–329

    Article  Google Scholar 

  • Wu J, Li P, Qian H (2011) Groundwater quality in Jingyuan County, a semi-humid area in Northwest China. E J Chem 8(2):787–793

    Article  Google Scholar 

  • Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7(10):3973–3982

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank farmers who allowed us to perform field activities in their properties. We also thank A. Montebello for support with chemical analysis, L. Guisolphi, L. Pocai, and J. Klein in field campaigns and Grupo de Pesquisa em Análise Socioambiental no Planalto Catarinense. Funding was granted by Fundação de Amparo a Pesquisa e Inovação do Estado de Santa Catarina—FAPESC (Grant No. 3474/2012), and logistic support was provided by UFSC—Campus Curitibanos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nei K. Leite.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, N.K., Stolberg, J., da Cruz, S.P. et al. Hydrochemistry of shallow groundwater and springs used for potable supply in Southern Brazil. Environ Earth Sci 77, 80 (2018). https://doi.org/10.1007/s12665-018-7254-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7254-4

Keywords

Navigation