Advertisement

Carbonate sediments on decorative fountains in Peterhof, Russia

  • Oleg S. Vereshchagin
  • Olga V. Frank-Kamenetskaya
  • Khristina V. Shumilova
  • Natalia Yu. Khadeeva
Thematic Issue
Part of the following topical collections:
  1. Stone in the Architectural Heritage: from quarry to monuments – environment, exploitation, properties and durability

Abstract

The chemical and mineral composition and formation conditions of dense grey-yellow colour crusts on the surface of monuments and bowls of decorative fountains in Peterhof (Russia) were studied using a wide range of methods (XRD, SEM, EMPA, Raman spectroscopy). The crusts consisted of calcium carbonates (monohydrocalcite, aragonite, calcite), magnesium carbonates (lansfordite, nesquehonite), and Sr-, Pb-rich carbonates (aragonite–cerussite–strontianite solid solution; up to 29 wt% PbO and 43 wt% SrO). Carbonates formed on all types of materials (gold, polyester resin, marble, granite) and do not interact with it. The cause of the formation of carbonate crusts on decorative fountains is the high content of carbonate ions in water. The variety of mineral phases is associated with fluctuations in the pH and Mg/Ca ratio. Recommendations are given on conservation measures that inhibit the formation of carbonate layers that threaten the preservation of the cultural heritage of this UNESCO World Heritage Site.

Keywords

Peterhof Decorative fountains Cultural heritage Monohydrocalcite Aragonite Lansfordite Nesquehonite 

Notes

Acknowledgements

Scientific research was performed at the Research Park of St. Petersburg State University Interdisciplinary Centre for Nanotechnology (analyst O.S. Medvedev), Centre for Geo-Environmental Research and Modelling (Geomodel; analysts V.V. Shilovskih and V.N. Bocharov), and Centre for X-ray Diffraction Methods.

References

  1. Altay E, Shahwan T, Tanoğlu M (2007) Morphosynthesis of CaCO3 at different reaction temperatures and the effects of PDDA, CTAB, and EDTA on the particle morphology and polymorph stability. Powder Technol 178:194–202CrossRefGoogle Scholar
  2. Benson LV, Meyers PA, Spencer RJ (1991) Change in the size of Walker Lake during the past 5000 years. Palaeogeogr Palaeoclimatol Palaeoecol 81:189–214CrossRefGoogle Scholar
  3. Chelibanov VP, Marugin AM, Sazanova KV, Abakumov EV, Vlasov, Yu D, Manurtdinova VV, Frank-Kamenetskaya OV (2018) Outdoor environment of the monuments in the Necropoleis. In: The effects of the environment on St. Petersburg cultural heritage. Springer Verlag (in press)Google Scholar
  4. Graue B, Siegesmund S, Oyhantcabal P, Naumann R, Licha T, Simon K (2013) The effect of air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban, and rural environments—a case study of the Cologne, Altenberg and Xanten cathedrals. Environ Earth Sci 69(4):1095–1124CrossRefGoogle Scholar
  5. Hänchen M, Prigiobbe V, Baciocchi R, Mazzotti M (2008) Precipitation in the Mg-carbonate system-effects of temperature and CO2 pressure. Chem Eng Sci 63:1012–1028CrossRefGoogle Scholar
  6. ISO 9223 (2012) Corrosion of metals and alloys—corrosivity of atmospheres—classification, determination and estimationGoogle Scholar
  7. Kolokoltsev VG, Nikitin MY, Kovalevskaya EO (2014) Modern travertines in the St. Petersburg area. Priroda 7:17–29 (in Russian) Google Scholar
  8. Last WM (1992) Petrology of modern carbonate hardgrounds from East Basin Lake, a saline maar lake, southern Australia. Sed Geol 81:215–229CrossRefGoogle Scholar
  9. Li M, Kang S, Zhu L, You Q, Zhang Q, Wang J (2008) Mineralogy and geochemistry of the Holocene lacustrine sediments in Nam Co, Tibet. Quat Int 187:105–116CrossRefGoogle Scholar
  10. Lovering TG (1976) Lead in the environment. In: Lovering TG (ed) Geological survey professional paper 957. U.S. Geological Survey, Washington, DCGoogle Scholar
  11. Ming DW, Franklin WT (1985) Synthesis and characterization of lansfordite and nesquehonite. Soil Sci Soc Am J 49(5):1303–1308CrossRefGoogle Scholar
  12. Munemoto T, Fukushi K (2008) Transformation kinetics of monohydrocalcite to aragonite in aqueous solutions. J Mineral Petrol Sci 103:345–349CrossRefGoogle Scholar
  13. Nishiyama R, Munemoto T, Fukushi K (2013) Formation condition of monohydrocalcite from CaCl2–MgCl2–Na2CO3 solutions. Geochim Cosmochim Acta 100:217–231CrossRefGoogle Scholar
  14. Raskin AG (1984) Petrodvorec: Dvorcy-muzei, parki, fontany. Palaces, Museums, Parks, Fountains, Lenizdat, Peterhof (in Russian) Google Scholar
  15. Siedel H (2013) Magnesium sulphate salts on monuments in Saxony (Germany): regional geological and environmental causes. Environ Earth Science 69:1249–1261CrossRefGoogle Scholar
  16. Singh M, Kumar SV, Waghmare SA, Sabale PD (2016) Aragonite–vaterite–calcite: polymorphs of CaCO3 in 7th century CE lime plasters of Alampur group of temples, India. Constr Build Mater 112:386–397CrossRefGoogle Scholar
  17. Sklyarov EV, Solotchina EP, Vologina EG, Ignatova NV, Izokh OP, Kulagina NV, Sklyarova OA, Solotchin PA, Stolpovskaya VN, Ukhova NN, Fedorovskii VS, Khlystov OM (2010) Detailed Holocene climate record from the carbonate section of saline Lake Tsagan-Tyrm (West Baikal area). Russ Geol Geophys 51(3):237–258CrossRefGoogle Scholar
  18. Skougstadt MW, Horr CA (1960) Occurrence of strontium in natural water. Geological Survey Circular 420, U.S. Geological Survey, Washington, DCGoogle Scholar
  19. Solotchina EP, Sklyarov EV, Vologina EG, Orlova LA, Sklyarova OA, Solotchin PA, Stolpovskaya VN, Fedorovskii VS, Khlystov OM (2008) Carbonates in the sedimentary record of saline Tsagan-Tyrm Lake, west Baikal region: New type of high-resolution paleoclimatic signals. Dokl Akad Nauk SSSR 421(2):926–933Google Scholar
  20. Taylor GF (1975) The occurrence of monohydrocalcite in two small lakes in the South-East of South Australia. Am Miner 60:690–697Google Scholar
  21. Tomilina O, Menshova J, Savenkova G, Bogatyrev I, Ryabchuk D, Frank-Kamenetsky D, Pavlovsky A (2014) Geological and environmental risks in St. Petersburg. Practical recommendations for climate change adaptation. Report, 68Google Scholar
  22. Török Á, Licha T, Simon K, Siegesmund S (2011) Urban and rural limestone weathering; the contribution of dust to black crust formation. Environ Earth Sci 63(4):675–693CrossRefGoogle Scholar
  23. Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Science Ltd., Oxford, p 496CrossRefGoogle Scholar
  24. Unluer C, Al-Tabbaa A (2014) Characterization of light and heavy hydrated magnesium carbonates using thermal analysis. J Therm Anal Calorim 115(1):595–607CrossRefGoogle Scholar
  25. Vollmer MK, Weiss RF, Williams RT, Falkner KK, Qiu X, Ralph EA et al (2002) Physical and chemical properties of the waters of saline lakes and their importance for deep-water renewal: Lake Issyk-Kul, Kyrgyzstan. Geochim Cosmochim Acta 66(24):4235–4246CrossRefGoogle Scholar
  26. Watt J, Tidblad J, Kucera V, Hamilton R (eds) (2009) The effects of air pollution on cultural heritage. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Oleg S. Vereshchagin
    • 1
  • Olga V. Frank-Kamenetskaya
    • 1
  • Khristina V. Shumilova
    • 2
  • Natalia Yu. Khadeeva
    • 3
  1. 1.Institute of Earth ScienceSaint Petersburg State UniversitySt. PetersburgRussia
  2. 2.OOO Restoration Workshop “Nasledie”St. PetersburgRussia
  3. 3.SMR “Peterhof”St. PetersburgRussia

Personalised recommendations