Skip to main content

Advertisement

Log in

Geochemistry, spatial distribution and environmental risk assessment of the surface sediments: Anchar Lake, Kashmir Valley, India

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Anchar Lake, a mono-basined freshwater lake in Kashmir Valley, has experienced major sediment deterioration due to changes in the local catchment and anthropogenic inputs during the recent past. The present study was conducted to evaluate the major, trace element concentrations and environment risk assessment in the surface sediments of Anchar Lake. Spatial distribution of organic matter (OM), CaCO3, TOC, sand–silt–clay and C/N ratio was studied to understand their source and accumulation in recent surface sediments. Textural studies indicate that most of the sediment samples are clayey silt to silty clay except one sample being of sandy–clay–silt nature. OM, CaCO3 content and C/N ratio results reveal that the sediments are organically rich and the source of OM is controlled by both; autochthonous and terrestrial sources. The major oxide geochemistry reflects higher concentrations of CaO, MgO and TiO2 compared to the  UCC values and the possible dilution effect of CaO on other major oxides. Environmental risk assessment indices (Igeo and EF) reveal that the lake surface sediments are low to moderately enriched with Cu, Ni, Zn and Pb and thus are a direct threat to aquatic life. Pollution load index indicates higher contamination of the sediment samples collected along the agricultural and urban land-cover sites. In the absence of industries and metal mines in the catchment area, the agricultural inputs, domestic effluents and untreated sewage discharges are the probable source for the moderate increase in trace metals in the lake sediments. Based on geochemical and environmental parameters, an assessment of sediment contamination results revealed potential risks ranging from moderate to strong for the lake environment, particularly towards areas proximal to agricultural and land-use sites. The above results from this study thus add to the fundamental knowledge of the present lake processes occurring within the lake and its interactions with the surrounding catchment areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abuduwaili J, Zhang ZY, Jiang FQ (2015) Assessment of the distribution, sources and potential ecological risk of heavy metals in the dry surface sediment of Aibi lake in Northwest China. PLoS ONE 10(3): e0120001. https://doi.org/10.1371/journal.pone.0120001

    Article  Google Scholar 

  • Agrawal DP, Kusumgar S, Krishnamurthy RV (1985) Cenozoic climatic changes in Kashmir: the multidisciplinary data. In: Agrawal DP (ed) Climate and geology of Kashmir: the last four million years. Today & Tomorrows Publishers and Printers, New Delhi, pp 1–12

    Google Scholar 

  • Agrawal DP, Dodia R, Kotlia BS, Razdan H, Sahni A (1989) The Plio-Pliestocene geologic and climatic record of the Kashmir Valley, India: a review and new data. Palaeogeog Palaeoclim Palaeoecol 73:267–286

    Article  Google Scholar 

  • Ahanger IA, Saksena DN, Mir MF (2012a) Seasonal variation in zooplankton community structure of Anchar Lake, Kashmir. Univ J Environ Res Technol 2(4):305–310

    Google Scholar 

  • Ahanger IA, Saksena DN, Mir MF, Ahanger MA (2012b) Seasonal variations in physic-chemical characteristics of Anchar Lake, Kashmir International. J Adv Biol Res 3(2):352–357

    Google Scholar 

  • Ahmad I, Chandra R (2013) Geochemistry of loess-paleosol sediments of Kashmir Valley, India: provenance and weathering. J Asian Earth Sci 66:73–89

    Article  Google Scholar 

  • Ahmad S, Alam A, Ahmad B, Afzal A, Bhat MI, Bhat MS, Farooq M, Ahmad HF (2017) Tectonics and Natural Hazards Research Group, tectono-geomorphic indices of the Erin basin, NE Kashmir Valley, India. J Asian Earth Sci. https://doi.org/10.1016/j.jseaes.2017.10.013

    Google Scholar 

  • Alam A, Ahmad S, Bhat MS, Ahmad B (2015) Tectonic evolution of Kashmir basin in Northwest Himalayas. Geomorphology 239:114–126

    Article  Google Scholar 

  • Babeesh C, Achyuthan A, Jaiswal MK, Lone A (2017a) Late quaternary loess-like paleosols and edocomplexes, geochemistry, provenance and source area weathering, Manasbal, Kashmir Valley, India. Geomorphology 284:191–205

    Article  Google Scholar 

  • Babeesh C, Lone A, Achyuthan A (2017b) Geochemistry of Manasbal lake sediments, Kashmir: weathering, provenance and tectonic setting. J Geol Soc India 89:563–572

    Article  Google Scholar 

  • Badar B, Romshoo SA (2008) Assessment of pollution load of Dal Lake using geospatial tools. In: Proceedings of Taal 2007: the 12th World Lake Conference, pp 668–679

  • Badar B, Romshoo SA, Khan MA (2013) Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover. J Earth Syst Sci 122:433–449

    Article  Google Scholar 

  • Balamurugan P, Vasudevan S (2014) Spatial distribution of grain size characteristics and its role in interpreting the sedimentary depositional environment, Kodaikanal lake, Tamil Nadu, India. J Earth Sci Clim Change 05:217

    Google Scholar 

  • Bali BS, Wani AA, Khan RA, Ahmad S (2016) Morphotectonic analysis of the Madhumati watershed, northeast Kashmir Valley. Arab J Geosci 9:390. https://doi.org/10.1007/s12517-016-2395-9

    Article  Google Scholar 

  • Basavaiah N, Wiesner MG, Anoop A, Menzel P, Nowaczyk NR, Deenadayalan K, Brauer A, Gaye B, Naumann R, Riedel N, Stebich M, Prasad S (2014) Physicochemical analyses of surface sediments from the Lonar Lake, central India—implications for palaeoenvironmental reconstruction. Fundam Appl Limnol 184(1):51–68

    Article  Google Scholar 

  • Bhat SA, Meraj G, Yaseen S, Bhat AR, Pandit AK (2013) Assessing the impact of anthropogenic activities on spatio-temporal variation of water quality in Anchar Lake, Kashmir Himalayas. Intern J Environ Sci 3(5):1625–1640

    Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91(6):611–627

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib Miner Petrol 92:181–193

    Article  Google Scholar 

  • Blumberg S, Schutt B (2004) Character of lake floor sediments from Central Lake Abaya, South Ethiopia. In: Lake Abaya research symposium 2004-proceedings 4, pp 1–10

  • Boyle J, Rose NL, Appleby PG, Birks HJB (2004) Recent environmental change and human impact on Svalbard: the lake-sediment geochemical record. J Paleolimnol 31:515–530. https://doi.org/10.1023/B:JOPL.0000022549.07298.6e

    Article  Google Scholar 

  • Brijraj KD, Birgit GH (2003) Geochemistry of Rewalsar lake sediment, lesser Himalaya, India: implications for source-area weathering, provenance and tectonic setting. Geosci J 7(4):299–312

    Article  Google Scholar 

  • Cesari M (2007) Estrategias de análisis y exploración de datoscomosoporte a la adquisicion de conocimiento para modelización de sistemasexpertosbayesianoscausales. Trabajo Final de Especialidaden Ingeniería de Sistemas Expertos, ITBA

    Google Scholar 

  • Chandrajith R, Mahatantila K, Jayasena HAH, Tobschall HJM (2008) Geochemical characteristics of sediments from a reservoir (tank) ecosystem in Sri Lanka. Paddy Water Environ 6:363–371

    Article  Google Scholar 

  • Chapman PM (1992) Sediment quality triad approach. Sediment classification methods compendium. U.S. Environmental Protection Agency (USEPA). Washington, D.C. EPA-823-R-92-006, 10(1), pp 10–18

  • Dar RA, Romshoo SA, Chandra R, Ahmad I (2014) Tectono-geomorphic study of the Karewa Basin of Kashmir Valley. J Asian Earth Sci 92:143–156

    Article  Google Scholar 

  • Das BK, Haake B (2003) Geochemistry of Rewalsar Lake sediment, Lesser Himalaya, India: implications for source-area weathering, provenance and tectonic setting. Geosci J 7(4):299–312

    Article  Google Scholar 

  • Das BK, Al-Mikhlafi AS, Kaur P (2006) Geochemistry of Mansar Lake sediments, Jammu, India: implication for source-area weathering, provenance, and tectonic setting. J Asian Earth Sci 26:649–668

    Article  Google Scholar 

  • Das BK, Gaye B, Kaur P (2008) Geochemistry of Renuka Lake and wetland sediments, Lesser Himalaya (India): implications for source-area weathering, provenance and tectonic setting. Environ Geol 54:147–163

    Article  Google Scholar 

  • Dean WE (2006) Characterization of organic matter in lake sediments from Minnesota and Yellowstone National Park. In: Open File Report 2006-1053, US Geological Survey Report, Reston, Virginia, pp 40

  • Dung TTT, Cappuyns V, Swennen R, Phung NK (2013) From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev Environ Sci Biotechnol 12:335–353

    Article  Google Scholar 

  • Farooq M, Muslim M (2014) Dynamics and forecasting of population growth and urban expansion in Srinagar City—a geospatial approach. Int Arch Photogramm Remote Sens Spat Inf Sci 8:709–716. https://doi.org/10.5194/isprsarchives-XL-8-709-2014

    Article  Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environment of Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J Geol Soc Lond 144:531–542

    Article  Google Scholar 

  • Ganaie MA, Parveen M, Balkhi MH (2015) Physico-chemical profile of three freshwater flood plain lakes of River Jhelum, Kashmir (India). Intern J Multidiscip Res Dev 2(11):527–532

    Google Scholar 

  • Goher ME, Farhat HI, Abdo MH, Salem SG (2014) Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egypt J Aquat Res 40:213–224

    Article  Google Scholar 

  • Gopal V, Krishnakumar S, Peter TS, Nethaji S, Kumar S, Jayaprakash M, Maghesh NS (2016) Assessment of trace element accumulation in surface sediments off Chennai coast after a major flood event. Mar Poll Bull. https://doi.org/10.1016/j.marpolbul.2016.10.019

    Google Scholar 

  • Graver JI, Scott TJ (1995) Trace elements in shale as indicators of crustal provenance and terrain accretion in south Canadian Cordillera. Geol Soc Am Bull 107:440–453

    Article  Google Scholar 

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. a sedimentological approach. Water Res 14(8):975–1001

    Article  Google Scholar 

  • Hedges JI, Stern JH (1984) Carbon and nitrogen determinations of carbonate-containing solids. Limnol Oceanogr 29:657–663. https://doi.org/10.4319/lo.1984.29.3.0657

    Article  Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  • Hilton J (1985) A conceptual framework for predicting the occurrence of sediment focusing and sediment redistribution in small lakes. Limnol Oceanogr 30:1131–1143

    Article  Google Scholar 

  • Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw Biol 46:431–451

    Article  Google Scholar 

  • Ingram RL (1970) Procedures in sedimentary petrology. Wiley, New York, pp 49–67

    Google Scholar 

  • Iqbal J, Saleem M, Shah MH (2016) Spatial distribution, environmental assessment and source identification of metals content in surface sediments of freshwater reservoir, Pakistan. Chem Erde 76:171–177

    Article  Google Scholar 

  • Jeelani G, Shah AQ (2006) Geochemical characteristics of water and sediment from the Dal Lake, Kashmir Himalaya: constraints on weathering and anthropogenic activity. Environ Geol 50(1):112–123

    Article  Google Scholar 

  • Jin Z, Cao J, Wu J, Wang S (2006a) A Rb/Sr record of catchment weathering response to Holocene climate change in Inner Mongolia. Earth Surf Process Landf 31:285–291

    Article  Google Scholar 

  • Jin Z, Li F, Cao J, Wang S, Yu J (2006b) Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology 80:147–163

    Article  Google Scholar 

  • Kango RA, Dubey KP, Zutshi D (1987) Sediment chemistry of Kashmir Himalayan lakes: clay mineralogy. Chem Geol 64:121–126

    Article  Google Scholar 

  • Kasilingam K, Gandhi MS, Krishnakumar S, Magesh NS (2016) Trace element concentration in surface sediments of Palk Strait, southeast coast of Tamil Nadu, India. Mar Poll Bull 111:500–508

    Article  Google Scholar 

  • Kastratovic V, Jacimivic Z, Bigovic M, Durovic D, Krivokapic S (2016) Environmental status and geochemical assessment sediments of Lake Skadar, Montenegro. Environ Monit Assess 188(449):1–15

    Google Scholar 

  • Kaul V, Hando VK, Raina R (1980) Physico-chemical characteristics of Nilnag- Ahigh altitude forest lake in Kashmir and its comparison with the valley lakes. Proc Indian Natl Sci Acad 46(4):528–541

    Google Scholar 

  • Kaushal S, Binford MW (1999) Relationship between C: N ratios of lake sediments, organic matter sources, and historical deforestation in Lake pleasant, Massachusetts, USA. J Paleolimnol 22:439–442

    Article  Google Scholar 

  • Khan JA, Gavali RS, Shouche YS (2012) Exploring present status of hydrochemistry and sediment chemistry of Dal Lake, Kashmir and effect of anthropogenic disturbances on it. Indian J Innov Dev 1(7):554–571

    Google Scholar 

  • Khanday SA, Yousuf AR, Reshi ZA, Rashid I, Jehangir A, Romshoo SA (2016) Management of Nymphoides peltatum using water level fluctuations in freshwater lakes of Kashmir Himalaya. Limnology. https://doi.org/10.1007/s10201-016-0503-x

    Google Scholar 

  • Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83

    Article  Google Scholar 

  • Liu E, Shen J, Yang X, Zhang E (2012) Spatial distribution and human contamination quantification of trace metals and phosphorus in the sediments of Chaohu Lake, a eutrophic shallow lake, China. Environ Monit Assess 184:2105–2118

    Article  Google Scholar 

  • Lone A, Babeesh C, Achyuthan H, Chandra R (2017) Evaluation of environmental status and geochemical assessment of sediments, Manasbal Lake, Kashmir, India. Arab J Geosci 10:1–18

    Article  Google Scholar 

  • Lottermoser BG, Schutz U, Boenecke J, Oberhansli R, Zolitschka B, Negendank JFW (1997) Natural and anthropogenic influences on the geochemistry of Quaternary lake sediments from Holzmaar, Germany. Environ Geol 31(3/4):236–247

    Article  Google Scholar 

  • Mahapatra DM, Chanakya HN, Ramachandra TV (2011) C: N ratio of Sediments in a sewage fed Urban Lake. Intern J Geol 3(5):86–92

    Google Scholar 

  • McLennan SM, Taylor SR (1991) Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J Geol 99:1–21

    Article  Google Scholar 

  • McManus J, Severemann S, Cohen AS, McKay JL, Bo R, Montanye A, Hartwell AM, Rebecca LP, Brucker B, Wheatcroft R (2015) The sedimentary response to a rapid change in lake level in Lake Tanganyika. Palaeogeogr Palaeoclimatol Palaeoecol 440:647–658

    Article  Google Scholar 

  • Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302

    Article  Google Scholar 

  • Meyers PA (2003) Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem 34:261–289

    Article  Google Scholar 

  • Meyers AP, Ishiwatari R (1993) Lacustrine organic geochemistry-An overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20:867–900

    Article  Google Scholar 

  • Meyers PA, Lallier-Verges E (1999) Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. J Paleolimnol 21:345–372

    Article  Google Scholar 

  • Meyers PA, Teranes JL (2001) Sediment organic matter. In: Last WM, Smol JP (eds) Tracking environmental changes using lake sediment physical and geochemical methods, vol 2. Kluwer Academic, Dordrecht, pp 239–270

    Chapter  Google Scholar 

  • Minyuk PS, Brigham-Grette J, Melles M, Borkhodoev BY, Glushkova O (2007) Inorganic geochemistry of El’gygytgyn Lake sediments (northeastern Russia) as an indicator of paleoclimatic change for the last 250 kyr. J Paleolimnol. https://doi.org/10.1007/s10933-006-9027-4

    Google Scholar 

  • Muller G (1979) Schwermetalle in den sediments des Rheins-Veranderungen seitt. Umaschan 79:778–783

    Google Scholar 

  • Rashid I, Farooq M, Muslim M, Romshoo SA (2013) Assessing the impact of anthropogenic activities on Manasbal Lake in Kashmir Himalayas. Intern J Environ Sci 3(6):1–12

    Google Scholar 

  • Rashid SA, Ganai JA, Masoodi A (2014) Major and trace element geochemistry of lake sediments, India: implications for weathering and climate control. J Geosci, Arab. https://doi.org/10.1007/s12517-014-1639-9

    Google Scholar 

  • Raza M, Ahmad A, Mohammad A (1978) The valley of Kashmir, a geographical interpretation of the land, vol 1. Vikas Publishing House Pvt Ltd, New Delhi

    Google Scholar 

  • Romshoo SA, Muslim M (2011) Geospatial Modeling for assessing the nutrient load of a Himalayan Lake. Environ Earth Sci 64:1269–1282

    Article  Google Scholar 

  • Roser P, Korsch RJ (1986) Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94:635–650

    Article  Google Scholar 

  • Sakan SM, Djordjevic DS, Manojlovic DD, Polic PS (2009) Assessment of heavy metal pollutants accumulation in the Tisza river sediments. J Environ Manag 90:3382–3390

    Article  Google Scholar 

  • Sampei Y, Matsumoto E (2001) C/N ratios in a sediment core from Nakaumi lagoon, southwest Japan. Geochem J 35:189–205

    Article  Google Scholar 

  • Sarah S, Jeelani G, Ahmed S (2011) Assessing variability of water quality in a groundwater-fed perennial lake of Kashmir Himalayas using linear geostatistics. J Earth Syst Sci 120(3):399–411

    Article  Google Scholar 

  • Sarkar S, Prakasam M, Upasana S, Bhushan R, Gaury PK, Meena NK (2016) Rapid sedimentation history of Rewalsar Lake, Lesser Himalaya, India during the last fifty years-estimated using Cs and Pb dating techniques: a comparative study with other North-Western Himalayan Lakes. Himal Geol 37(1):1–7

    Google Scholar 

  • Shah RA, Achyuthan H, Lone A, Ravichandran R (2017) Diatoms, spatial distribution and physicochemical characteristics of the Wular Lake Sediments, Kashmir Valley, Jammu and Kashmir. J Geol Soc India 90:159–168

    Article  Google Scholar 

  • Sheela AM, Letha J, Joseph S, Chacko M, Sanalkumar SP, Thomas J (2012) Water quality assessment of a tropical coastal lake system using multivariate-cluster, principal component and factor analysis. Lake Res Manag 17:143–159

    Article  Google Scholar 

  • Sheikh JA, Jeelani G, Gavali RS, Shah AR (2014) Weathering and anthropogenic influences on the water and sediment chemistry of Wular Lake, Kashmir Himalaya. Environ Earth Sci 6:2837–2846

    Article  Google Scholar 

  • Shepard FP (1954) Nomenclature based on sand–silt–clay ratios. J Sedim Petrol 24:151–158

    Article  Google Scholar 

  • Singh IB (1982) Sedimentation pattern in the Karewa Basin, Kashmir Valley, India, and its geological significance. J Paleontol Soc India 27:71–110

    Google Scholar 

  • Singh AK, Hasnain SI, Banerjee DK (2003) Grain size and geochemical portioning of heavy metals in sediments of the Danodar River-a tributary of the lower Ganga, India. Environ Geol 39:90–98

    Article  Google Scholar 

  • Suresh G, Sutharsan P, Ramasamy V, Venkatachalapathy R (2012) Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam Lake sediments, India. Ecotoxicol Environ Saf 84:117–124

    Article  Google Scholar 

  • Tang W, Shan B, Zhang H, Zhang W, Zhao Y, Ding Y, Rong N, Zhu X (2014) Heavy metal contamination in the surface sediments of representative limnetic ecosystems in eastern China. Sci Rep 4(7152):1–7

    Google Scholar 

  • Tarras-Wahlberg H, Everard M, Harper DM (2002) Geochemical and physical characteristics of river and lake sediments at Naivasha, Kenya. Hydrobiologia 488:27–41

    Article  Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust: a new table. Geochim Cosmochim Acta 28:1273–1285

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlton, p 312

    Google Scholar 

  • Thakur VC, Rawat BS (1992) Geological map of the Western Himalaya. Published Under the Authority of the Surveyor General of India. Printing Group of Survey of India, 101 (HLO)

  • Tomlinson DC, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol Mar Res 33:566–575

    Google Scholar 

  • Wang L, Wang Y, Zhang W, Xu C, An Z (2014) Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environ Earth Sci 71(3):1183–1193

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Elsevier Academic Press, San Diego, p 1006

    Google Scholar 

  • Xiao HF, Zhang S, Guan Y, Lu S, Gao Y, Sun Q, Xu H, Li M, Wang J, Pei X (2014) Assessment of potential risks associated with heavy metal contamination in sediment in Aobaopao Lake, China, determined from sediment cores. Ecotoxicology 23:527–537

    Article  Google Scholar 

  • Yao SC, Xue B (2015) Sedimentary geochemical record of human-induced environmental changes in Huanggaihu Lake in the middle reach of the Yangtze River, China. J Limnol 74:31–39

    Google Scholar 

  • Yao ZG, Bao ZY, Gao P (2006) Environmental assessments of trace metals in sediments from Dongting Lake, Central China. J China Univ Geosci 17:310–319

    Article  Google Scholar 

  • Yousuf T, Yousuf AR, Mushtaq B (2015) Comparative account on physico-chemical parameters of two wetlands of Kashmir, Valley. Intern J Recent Sci Res 6(2):2876–2882

    Google Scholar 

  • Zhang J, Chen X, Liu Q, Wu L (2014) Distribution and potential risk assessment of heavy metals in main estuaries of Lake Poyang’s tributaries. Res Environ Yangtze Basin 23:95–100

    Google Scholar 

  • Zutshi DP, Subla BA, Khan MA, Wanganeo A (1980) Comparative limnology of nine lakes of Jammu and Kashmir Himalayas. Hydrobiologia 72:101–112

    Article  Google Scholar 

Download references

Acknowledgements

Aasif Mohamad Lone is grateful to Anna University, Chennai, for the Anna Centenary Research Fellowship (ACRF) that enabled him to carry out this work.

Rayees Ahmad Shah thanks the DST, New Delhi for the DST PURSE fellowship and Fousiya A A ackowledges the funds received through the Rajiv Gandhi National fellowship, UGC, New Delhi. All the authors thank the manuscript handling editor and the two anonymous reviewers for their constructive comments and suggestions that helped in the better presentation of the work and the mansucript. Mohammd Rafiq is acknowledged for his help during the manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hema Achyuthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lone, A., Shah, R.A., Achyuthan, H. et al. Geochemistry, spatial distribution and environmental risk assessment of the surface sediments: Anchar Lake, Kashmir Valley, India. Environ Earth Sci 77, 65 (2018). https://doi.org/10.1007/s12665-018-7242-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7242-8

Keywords

Navigation