Skip to main content

Advertisement

Log in

Geochemistry of major and trace elements in sediments from inlets of the Xiangjiang and Yuanjiang River to Dongting Lake, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Concentrations of major and trace elements in sediments from the Xiangjiang and Yuanjiang River inlets to Dongting Lake (China) were analyzed using XRF and ICP-MS methods, respectively. The results show that sediments from both rivers show comparable major element compositions and a similar distribution of high strength field elements (Zr, Hf, Nb, Ta, Th and U), large ion lithophile elements (Ba, Sc, Ga, Ge, Rb, Y, Cs), and rare earth elements (REE). However, the distribution of heavy metals V, Cr, Co, Ni, Cu, Zn, Pb, Cd, Tl and Bi varies significantly in sediments between the two rivers. The Xiangjiang River sediments are characterized by having a distinctly higher enrichment of the heavy metals Cr, Mn, Ni, Cu, Zn, Pb, Tl, Bi and Cd, and they are mostly contaminated by these heavy metals. That leads to the formation of heavy-metal contaminated (HMC) sediments. Sediments from these two rivers can be coincidentally divided into three groups by their REE patterns and factor load plots of principle component analyzing on major elements of 173 samples. The HMC sediments can further be separated from those of less contaminated sediments by plots of (Eu/Eu) *NS against the synthetic enrichment index values, and the HMC sediments are found to be significantly higher enriched in the major elements Al2O3, Fe2O3, MnO, P2O5 and LOI, and depleted in SiO2 and Na2O. Therefore, the distribution of the major elements Al2O3, Fe2O3, MnO, CaO, P2O5, LOI, SiO2 and Na2O in the river sediments can be used as indicators for identifying the HMC sediments. Thus, the ‘aluminium–iron index’ (AF), the ‘silicate index’ (SI), the ‘grain size index,’ and the Al2O3/SiO2, Fe2O3/SiO2 and Al2O3/Na2O ratios are then established as chemical indices for the use of identifying the HMC sediments. River sediments that have values of AF > 25.6, SI < 67.5, Al2O3/SiO2 > 0.29, Fe2O3/SiO2 > 0.12 and Al2O3/Na2O > 43.0 are then identified to be the HMC sediments in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bábek O, Grygar TM, Faměra M, Hron K, Nováková T, Sedláček J (2015) Geochemical background in polluted river sediments: how to separate the effects of sediment provenance and grain size with statistical rigour? CATENA 135:240–253

    Article  Google Scholar 

  • Bao ZC, Peng B, Xu JZ, Tan CY, Quan MJ (2012) Geochemical study on the relation of chemical compositions to heavy metal contamination of sediments from the lowermost Xiangjiang River, Hunan province, China. Geochimica 41(6):545–558 (in Chinese with an English abstract)

    Google Scholar 

  • Bayon G, Toucanne S, Skonieczny C, Andre L, Bermell S, Cheron S, Dennielou B, Etoubleau J, Freslon N, Gauchery T, Germain Y, Jorry SJ, Me′not G, Monin L, Ponzevera E, Rouget ML, Tachikawa K, Barrat JA (2015) Rare earth elements and neodymium isotopes in world river sediments revisited. Geochim Cosmochim Acta 170:17–38

    Article  Google Scholar 

  • Bilalia LEI, Rasmussen PE, Hall GEM, Fortin D (2002) Role of sediment composition in trace metal distribution in lake sediments. Appl Geochem 17:1171–1181

    Article  Google Scholar 

  • Blair TC, McPherson JG (1999) Grain-size and textural classification of coarse sedimentary particles. J Sediment Res 69(1):6–19

    Article  Google Scholar 

  • Bonjour JL, Dabard MP (1991) Ti/Nb ratios of clastic terrigenous sediments used as an indicator of provenance. Chem Geol 91(3):257–267

    Article  Google Scholar 

  • Borges JB, Huh Y (2007) Petrography and chemistry of the bed sediments of the Red River in China and Vietnam: provenance and chemical weathering. Sediment Geol 194:155–168

    Article  Google Scholar 

  • Borges JB, Huh Y, Moon S, Noh H (2008) Provenance and weathering control on river bed sediments of the eastern Tibetan Plateau and the Russian Far East. Chem Geol 254(1/2):52–72

    Article  Google Scholar 

  • Borghesi F, Migani F, Dinelli E (2016) Geochemical characterization of surface sediments from the northern Adriatic wetlands around the Po River delta. Part II: aqua regna results. J Geochem Explor 169:13–29

    Article  Google Scholar 

  • Chai L, Wang Z, Wang Y, Yang Z, Wang H, Wu X (2010) Ingestion risks of metals in groundwater based on TIN model and dose-response assessment: a case study in the Xiangjiang watershed, central-south China. Sci Total Environ 408:3118–3124

    Article  Google Scholar 

  • Cheng H, Li M, Zhao C, Yang K, Li K, Peng M, Yang Z, Liu F, Liu Y, Bai R, Cui Y, Huang Z, Li L, Liao Q, Luo J, Jia S, Pang X, Yang J, Yin G (2015) Concentrations of toxic metals and ecological risk assessment for sediments of major freshwater lakes in China. J Geochem Explor 157:15–26

    Article  Google Scholar 

  • Chon HT, Cho CH, Kim KW, Moon HS (1996) The occurrence and dispersion of potentially toxic elements in areas covered with shales and slates in Korea. Appl Geochem 11:69–76

    Article  Google Scholar 

  • Cullers RL, Basu A, Suttner LJ (1988) Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root Batholith, Montana, U.S.A. Chem Geol 70:335–348

    Article  Google Scholar 

  • Das A, Krishnaswami S (2007) Elemental geochemistry of river sediments from the Deccan Traps, India: implications to sources of elements and their mobility during basalt-water interaction. Chem Geol 242:232–254

    Article  Google Scholar 

  • Du Y, Cai S, Zhang X, Zhao Y (2001) Interpretation of the environmental change of Dongting Lake, middle reach of Yangtze River, China, by 210Pb measurement and satellite image analysis. Geomorphology 41:171–181

    Article  Google Scholar 

  • Fok L, Peart MR, Chen J (2013) The influence of geology and land use on the geochemical baselines of the East River basin, China. Catena 101(3):212–225

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Allègre CJ (1997) Chemical and physical denudation in the Amazon river basin. Chem Geol 142:141–173

    Article  Google Scholar 

  • Gao S, Lu TC, Zhang BR, Zhang HF, Han WL, Zhao ZD (1999) Structure and chemical compositions of East China upper continent crust. Sci China (Ser D) 42(2):129–140 (in Chinese)

    Article  Google Scholar 

  • Garzanti E, Padoan M, Setti M, López-Galindo A, Villa IM (2014) Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chem Geol 366:61–74

    Article  Google Scholar 

  • Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482

    Article  Google Scholar 

  • Grunsky EC, Drew LJ, Sutphin DM (2009) Process recognition in multi-element soil and stream-sediment geochemical data. Appl Geochem 24:1602–1616

    Article  Google Scholar 

  • Grygar TM, Popelka J (2016) Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. J Geochem Explor 170:39–57

    Article  Google Scholar 

  • Guo Y, Yang S (2016) Heavy metal enrichments in the Changjiang (Yangtze River) catchment and on the inner shelf of the East China Sea over the last 150 years. Sci Total Environ 543:105–115

    Article  Google Scholar 

  • Hafsteinsdottir EG, Camenzuli D, Rocavert AL, Walworth J, Gore DB (2015) Chemical immobilization of metals and metalloids by phosphates. Appl Geochem 59:47–62

    Article  Google Scholar 

  • Hanif N, Shah Eqani SAMA, Ali SM, Cincinelli A, Ali N, Katsoyiannis IA, Tanveer ZI, Bokhari H (2016) Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan. J Geochem Explor 165:62–70

    Article  Google Scholar 

  • Hellar-Kihampa H, Potgieter-Vermaak S, Meel KV, Rotondo GG, Kishimba M, Grieken RV (2012) Elemental composition of bottom sediments from Pangani river basin, Tanzania: lithogenic and anthropogenic Sources. Toxicol Environ Chem 94(3):525–544

    Article  Google Scholar 

  • HRGI (Hunan Regional Geology Institute) (1972) Report of Regional geology of Dongting Lake (1:200000). Geological Press, Beijing, pp 7–14 (in Chinese)

    Google Scholar 

  • Khalil HE, Schwartz C, Hamiani OE, Kubiniok J, Morel J, Boularbah A (2013) Distribution of major elements and trace metals as indicators of technosolisation of urban and suburban soils. J Soils Sediments 13:519–530

    Article  Google Scholar 

  • Kirkwood C, Everett P, Ferreira A, Lister B (2016) Stream sediment geochemistry as a tool for enhancing geological understanding: an overview of new data from south west England. J Geochem Explor 163:28–40

    Article  Google Scholar 

  • Lee JI, Clift PD, Layne G, Blum J, Khan AA (2003) Sediment flux in the modern Indus River inferred from the trace element composition of detrital amphibole grains. Sediment Geol 160:243–257

    Article  Google Scholar 

  • Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83

    Article  Google Scholar 

  • Liu Y, Liu HC, Li XH (1996) Simultaneous and precise determination of 40 trace elements in rock samples using ICP-MS. Geochimica 25(6):552–556 (in Chinese with English Abstract)

    Google Scholar 

  • Liu H, Probst A, Liao B (2005) Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci Total Environ 339:153–166

    Article  Google Scholar 

  • Mao LJ, Mo DW, Guo YY, Fu Q, Yang JH, Jia YF (2013) Multivariate analysis of heavy metals in surface sediments from lower reaches of the Xiangjiang River, southern China. Environ Earth Sci 69(3):765–771

    Article  Google Scholar 

  • Marx SK, Kamber BS (2010) Trace-element systematics of sediments in the Murray-Darling Basin, Australia: sediment provenance and palaeoclimate implications of fine scale chemical heterogeneity. Appl Geochem 25:1221–1237

    Article  Google Scholar 

  • Millot R, Allègre CJ, Gaillardet J, Roy S (2004) Lead isotopic systematics of major river sediments: a new estimate of the Pb isotopic composition of the Upper Continental Crust. Chem Geol 203:75–90

    Article  Google Scholar 

  • Mollazadeh N, Moattar F, Karbassi AR, Khorasani N (2013) Distribution of metals, chemical partitioning, pollution and origins in riverbed sediment. World Appl Sci J 21(5):674–680

    Google Scholar 

  • Möller P, Knappe A, Dulski P (2014) Seasonal variations of rare earths and yttrium distribution in the lowland Havel River, Germany, by agricultural fertilization and effluents of sewage treatment plants. Appl Geochem 41:62–72

    Article  Google Scholar 

  • Mueller UA, Grunsky EC (2016) Multivariate spatial analysis of lake sediment geochemical data; Melville Peninsula, Nunavut, Canada. Appl Geochem 75:247–262

    Article  Google Scholar 

  • N’guessan YM, Probst JL, Bur T, Probst A (2009) Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from? Sci Total Environ 407:2939–2952

    Article  Google Scholar 

  • Nasrabadi T, Bidhendi GN, Karbassi A, Mehrdadi N (2010a) Partitioning of metals in sediments of the Haraz River (Southern Caspian Sea basin). Environ Earth Sci 59:1111–1117

    Article  Google Scholar 

  • Nasrabadi T, Bidhendi GN, Karbassi A, Mehrdadi N (2010b) Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin. Environ Monit Assess 185:1737–1754

    Google Scholar 

  • Pakzad HR, Pasandi M, Rahimi H (2014) Distribution of heavy metals in the clastic fine-grained sediments of Gavkhuni playa lake (Southeast of Isfahan, Iran). Environ Earth Sci 71:4683–4692

    Article  Google Scholar 

  • Peng B, Frei R (2004) Nd–Sr–Pb isotopic constraints on metal and fluid sources in W–Sb–Au mineralization at Woxi and Liaojiaping (Western Hunan, Chna). Miner Deposita 39(3):313–327

    Article  Google Scholar 

  • Peng B, Song ZL, Tu XL, Lv HZ, Wu FC (2004) Release of heavy metals during weathering of the Lower Cambrian black shale in western Hunan. China Environ Geol 45(8):1137–1147

    Article  Google Scholar 

  • Peng B, Tang XY, Yu CX, Tang CY, Yi CY, Yang G, Tu XL, Liu Q, Yang KS (2011a) Heavy-metal contamination assessment and Pb isotopic tracing on source of metals in sediments of the Lowermost Xiangjiang River, Hunan Province (P. R. China). Acta Geol Sinica 85(2):282–299 (in Chinese with an English abstract)

    Article  Google Scholar 

  • Peng B, Tang XY, Yu CX, Tan CY, Yin CY, Yang G, Liu Q, Yang KS, Tu XL (2011b) Geochemistry of trace metals and Pb isotopes of sediments from the lowermost Xiangjiang River, Hunan Province (P. R. China): implications on sources of trace metals. Environ Earth Sci 64:1455–1473

    Article  Google Scholar 

  • Qian Y, Zheng MH, Gao L, Zhang B, Liu W, Jiao W, Zhao X, Xiao K (2005) Heavy metal contamination and its environmental risk assessment in surface sediments from Lake Dongting, People’s Republic of China. Bull Environ Contam Toxicol 75(1):204–210

    Article  Google Scholar 

  • Ramesh R, Subramanian V, Van Grieken R, Van’Tdack L (1989) The elemental chemistry of sediments in the Krishna River basin, India. Chem Geol 74:331–341

    Article  Google Scholar 

  • Roddaz M, Viers J, Brusset S, Baby P, Boucayrand C, Hérail G (2006) Controls in weathering and provenance in the Amazonian foreland basin: insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem Geol 226:31–65

    Article  Google Scholar 

  • Saeedi M, Li LY, Karbassi AR, Zanjani AJ (2013) Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environ Monit Assess 185:1737–1754

    Article  Google Scholar 

  • Sensarma S, Rajamani V, Tripathi JK (2008) Petrography and geochemical characteristics of the sediments of the small River Hemavati, Southern India: implications for provenance and weathering processes. Sediment Geol 205:115–125

    Article  Google Scholar 

  • Shao J, Yang S, Li C (2012) Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: inferences from analysis of fluvial sediments. Sediment Geol 265(266):110–120

    Article  Google Scholar 

  • Sharma A, Sensarma S, Kumar K, Khanna PP, Saini NK (2013) Mineralogy and geochemistry of the Mahi River sediments in tectonically active western India: implications for Deccan large igneous province source, weathering and mobility of elements in a semi-arid climate. Geochim Cosmochim Acta 104:63–83

    Article  Google Scholar 

  • Sharma RK, Putirka KD, Stone JJ (2016) Stream sediment geochemistry of the upper Cheyenne River watershed within the abandoned uranium mining region of the southern Black Hills, South Dakota, USA. Environ Earth Sci 75(9):1–12

    Article  Google Scholar 

  • Singh P (2009) Major, trace and REE geochemistry of the Ganga River sediments: influence of province and sedimentary processes. Chem Geol 266:251–264

    Article  Google Scholar 

  • Singh P (2010) Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chem Geol 269:220–236

    Article  Google Scholar 

  • Stutter MI, Langan SJ, Lunsdon DG, Clark LM (2009) Multi-element signatures of stream sediments and sources under moderate to low flow conditions. Appl Geochem 24(5):800–809

    Article  Google Scholar 

  • Sun GX, Wang XJ, Hu QH (2011) Using stable lead isotopes to trace heavy metal contamination sources in sediments of Xiangjiang and Lishui Rivers in China. Environ Pollution 159:3406–3410

    Article  Google Scholar 

  • Sun W, Sang L, Jiang B (2012) Trace metals in sediments and aquatic plants from the Xiangjiang River, China. J Soils Sediments 12:1649–1657

    Article  Google Scholar 

  • Tolosana-Delgado R, McKinley J (2016) Exploring the joint compositional variability of major components and trace elements in the Tellus soil geochemistry survey (Northern Ireland). Appl Geochem 75:263–276

    Article  Google Scholar 

  • Viers J, Dupre B, Gaillardet J (2009) Chemical composition of suspended sediments in World Rivers: new insights from a new database. Sci Total Environ 407(2):853–868

    Article  Google Scholar 

  • Vital H, Stattegger K (2000) Major and trace elements of stream sediments from the lowermost Amazon River. Chem Geol 168:151–168

    Article  Google Scholar 

  • Vital H, Stattegger K, Garbeschoenberg CD (1999) Composition and trace-element geochemistry of detrital clay and heavy-mineral suites of the lowermost Amazon River; a provenance study. J Sedment Res 69(3):563–575

    Article  Google Scholar 

  • Vystavna Y, Huneau F, Schafer J, Motelica-Heino M, Blanc G, Larrose A, Vergeles Y, Diadin D, Coustumer PL (2012) Distribution of trace elements in waters and sediments of the Seversky Donets transboundary watershed (Kharkiv region, Eastern Ukraine). Appl Geochem 27:2077–2087

    Article  Google Scholar 

  • Wu G, Pan L, Wei Q, Guo L (2015) Decreased mobility of heavy metals in Haihe River sediments: the possible role of tide gate. J Geochem Explor 157:92–99

    Article  Google Scholar 

  • Xie WC, Peng B, Kuang XL, Xiao Y, Yang ZX, Fang XH, Zeng DZ, Wu BJ, Tu XL, Wang X, Tan CY (2017) Lead isotopic tracing for heavy metal contamination sources developed in riverbed sediments of the Changsha, Xiangtan and Zhuzhou sections of the Xiangjiang River. China. Geochimica 46(4):380–394 (in Chinese with an English abstract)

    Google Scholar 

  • Yan MC, Gu TX, Chi QH, Wang CS (1997) Abundances of elements of China soils and surface geochemical properties of elements. Geophys Geochem Explor 21(3):161–167 (in Chinese with an English abstract)

    Google Scholar 

  • Yang X, Peng B, Wu YJ, Zhang K, Kuang XL, Wu BJ, Tan CY, Tu XL (2016) Geochemical study on heavy-metal contamination developed in river-bank sediments at the Xiangtan section of the Xiangjiang River, Hunan Province, China. Geochimica 45(1):62–76 (in Chinese with an English abstract)

    Google Scholar 

  • Yao ZG, Bao ZY, Pu G (2006) Environmental geochemistry of heavy metals in sediments of the Dongting Lake. Geochimica 35(6):629–638 (in Chinese with an English abstract)

    Google Scholar 

  • Young SM, Pitawala A, Ishiga H (2013) Geochemical characteristics of stream sediments, sediment fractions, soils, and basement rocks from the Mahaweli River and its catchment, Sri Lanka. Chem Erde 73:357–371

    Article  Google Scholar 

  • Zhang L, Zhao G (1996) The species and geochemical characteristics of heavy metals in the sediments of Kangjiaxi River in the Shuikoushan Mine Area, China. Appl Geochem 11:217–222

    Article  Google Scholar 

  • Zhang S, Dong W, Zhang L, Chen X (1989) Geochemical characteristics of heavy metals in the Xiangjiang River, China. Hydrobiologya 176(177):253–262

    Google Scholar 

  • Zhang Z, Tao F, Du J, Shi P, Yu D, Meng Y, Sun Y (2010) Surface water quality and its control in a river with intensive human impacts-a case study of the Xiangjiang River, China. J Environ Mange 91:2483–2490

    Article  Google Scholar 

  • Zhong L, Liu L, Yang J (2012) Characterization of heavy metal pollution in the paddy soils of Xiangyin County, Dongting lake drainage basin, central south China. Environ Earth Sci 67:2261–2268

    Article  Google Scholar 

  • Zhu YL, Jiang JH, Sun ZD, Huang Q, Wang HJ, Zhou YK (2008) Characteristics and an assessment on the heavy metal contamination developed in sediments of the Dongting Lake. J Lake Sci 220(4):477–485 (in Chinese with an English abstract)

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province 2014, and the National Science Foundation of China (Grant Nos. 41073095, 41071216). We would like to thank Dr. Changxun Yu, Dr. Dr. Xiaoyan Tang, Mr. Guang Yang and Mrs. Chunyan Yin for assisting in the field investigation. Three reviewers are thanked for their commons and suggestions for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 4036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Peng, B., Zhang, K. et al. Geochemistry of major and trace elements in sediments from inlets of the Xiangjiang and Yuanjiang River to Dongting Lake, China. Environ Earth Sci 77, 16 (2018). https://doi.org/10.1007/s12665-017-7193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7193-5

Keywords

Navigation