Skip to main content
Log in

Evaluation of the physico-mechanical parameters affecting the deterioration rate of Ahlat ignimbrites (Bitlis, Turkey)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The paper principally focuses on the durability assessment of various stratigraphic levels of Ahlat ignimbrites collected from the eastern region of Turkey. A total of four different ignimbrite types with dissimilar color, texture and particularly welding degree were tested in laboratory. The laboratory tests performed on the ignimbrite specimens indicate that the welding degree as well as the lithic material content mainly controls the strength and capillarity properties of the ignimbrites. In addition, the durability of highly porous ignimbrites strongly depends upon the degree of welding. The effect of several weathering agents on the ignimbrites was evaluated on the basis of decay constant parameter. Accordingly, salt and ice crystallization pressures are a couple of major destructive agents acting within the micropores of the ignimbrites. Conversely, the investigated specimens are relatively durable against cyclic wetting–drying. Statistical evaluations reveal that the pore diameter is the major controlling factor on the deterioration rate of the ignimbrites after specifically recurrent freeze–thaw cycles. Moreover, the dry unit weight of the ignimbrites is more significant than the uniaxial compressive strength considering the deterioration rates during wetting–drying and salt crystallization. A less significant relationship was obtained between pore diameter and salt crystallization decay constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(after Özvan et al. 2015)

Fig. 4

(after Özdemir et al. 2006)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

(after Akin and Ozsan 2011)

Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Akin M, Ozsan A (2011) Evaluation of the long-term durability of yellow travertine using accelerated weathering tests. Bull Eng Geol Environ 70(1):101–114

    Article  Google Scholar 

  • Altındağ R, Ayyıldız IS, Onargan T (2004) Mechanical property degradation of ignimbrite subjected to recurrent freeze-thaw cycles. Int J Rock Mech Min Sci 41:1023–1028

    Article  Google Scholar 

  • Angeli M, Bigas JP, Benavente D, Menendez B, Hebert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. Environ Geol 52:187–195

    Article  Google Scholar 

  • Anon OH (1979) Classification of rocks and soils for engineering geological mapping. Part I—rock and soil materials. Bull Int Assoc Eng Geol 19:364–371

    Article  Google Scholar 

  • ASTM (1992) Standard test method for evaluation of durability of rock for erosion control under wetting and drying conditions, D5313. Annual book of ASTM standards. American Society for Testing and Materials, West Conshocken, pp 1347–1348

    Google Scholar 

  • Aydar E, Gourgaud A, Ulusoy I, Digonnet F, Labazuy P, Sen E, Bayhan H, Kurttas T, Tolluoglu AU (2003) Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruption. J Volcanol Geotherm Res 123:301–312

    Article  Google Scholar 

  • Benavente D (2011) Why pore size is important in the deterioration of porous stones used in the built heritage. Rev Soc Esp Mineral 15:41–42

    Google Scholar 

  • Benavente D, Garci MA, Garci J, Sanchez-Moral S, Ordonez S (2004) Role of pore structure in salt crystallisation in unsaturated porous stone. J Cryst Growth 260(3):532–544

    Article  Google Scholar 

  • Benavente D, Cueto N, Martinez-Martinez J, Garcia Del Cura MA, Canaveras JC (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:197–206

    Article  Google Scholar 

  • Binal A, Kasapoğlu KE, Gökçeoğlu C (1997) The surficial physical deterioration behaviour of Neogene volcano-sedimentary rocks of Eskişehir-Yazılıkaya, NW Turkey. In: Proceedings of the international symposium on engineering geology and environment, Athens, Greece, vol 3. A. A. Balkema, Rotterdam, pp 3065–3069

  • Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. vol. 27. Geological Society, London, Memoirs

  • Cardenes V, Mateos FJ, Fernandez-Lorenzo S (2014) Analysis of the correlations between freeze–thaw and salt crystallization tests. Environ Earth Sci 71:1123–1134

    Article  Google Scholar 

  • Charola AE (2000) Salts in the deterioration of porous materials: an overview. J Am Inst Conserv 39:327–343

    Article  Google Scholar 

  • Chen TC, Yeung MR, Mori N (2004) Effect of water saturation on deterioration of welded tuff due to freeze–thaw action. Cold Reg Sci Technol 38:127–136

    Article  Google Scholar 

  • Franzoni E, Gentilini C, Graziani G, Bandini S (2014) Towards the assessment of the shear behaviour of masonry in on-site conditions: a study on dry and salt/water conditioned brick masonry triplets. Constr Build Mater 65:405–416

    Article  Google Scholar 

  • Gentilini C, Franzoni E, Bandini S, Nobile L (2012) Effect of salt crystallisation on the shear behaviour of masonry walls: an experimental study. Constr Build Mater 37:181–189

    Article  Google Scholar 

  • Giesche H (2006) Mercury porosimetry: a general (practical) overview. Part Part Syst Charact 23(1):9–19

    Article  Google Scholar 

  • Inigo AC, García-Talegon J, Vicente-Tavera S, Martin-Gonzalez S, Casado-Marin S, Vargas-Munoz M, Perez-Rodriguez JL (2013) Colour and ultrasound propagation speed changes by different ageing of freezing/thawing and cooling/heating in granitic materials. Cold Reg Sci Technol 85:71–78

    Article  Google Scholar 

  • ISRM (1981) Rock characterization, testing & monitoring: ISRM suggested methods. In: Brown ET (ed) Published for the Commission on Testing Methods, International Society for Rock Mechanics by Pergamon Press, Oxford, New York

  • Jamshidi A, Nikudel MR, Khamehchiyan M (2013) Predicting the long-term durability of building stones against freeze–thaw using a decay function model. Cold Reg Sci Technol 92:29–36

    Article  Google Scholar 

  • Karaoğlu Ö, Özdemir Y, Tolluoğlu AÜ, Karabıyıkoğlu M, Köse O, Froger JL (2005) Stratigraphy of the volcanic products around Nemrut Caldera: implications for reconstruction of the Coaldera formation. Turk J Earth Sci 14:123–143

    Google Scholar 

  • Koralay T, Özkul M, Kumsar H, Çelik SB, Pektaş K (2011) The effect of welding degree on geotechnical properties of an ignimbrite flow unit: the Bitlis castle case (eastern Turkey). Environ Earth Sci 64:869–881

    Article  Google Scholar 

  • Korkanç M (2013) Deterioration of different stones used in historical buildings within Nigde province, Cappadocia. Constr Build Mater 48:789–803

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol 27:745–750

    Article  Google Scholar 

  • López-Doncel R, Wedekind W, Dohrmann R, Siegesmund S (2013) Moisture expansion associated to secondary porosity: an example of the Loseros Tuff Guanajuato, Mexico. Environ Earth Sci 69(4):1189–1201. https://doi.org/10.1007/s12665-012-1781-1

    Article  Google Scholar 

  • López-Doncel R, Wedekind W, Leiser T, Molina-Maldonado S, Velasco Sánchez A, Dohrmann R, Kral A, Wittenborn A, Aguillón-Robles A, Siegesmund S (2016) Salt bursting tests on volcanic tuff rocks from Mexico. Environ Earth Sci 75:212. https://doi.org/10.1007/s12665-015-4770-3

    Article  Google Scholar 

  • Moon VG (1993) Geotechnical characteristics of ignimbrite: a soft pyroclastic rock type. Eng Geol 35:33–48

    Article  Google Scholar 

  • Mutlu, M., Öztürk, Ş., 2002. Van Gölü çevresinde geleneksel yapı malzemesi olarak Ahlat Taşı’nın (andezit tüf) fiziksel ve mekanik özellikleri hakkında bir araştırma. TSE Stand Derg 482:44–48 (in Turkish)

    Google Scholar 

  • Mutlutürk M, Altındağ R, Türk G (2004) A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing–thawing and heating–cooling. Int J Rock Mech Min Sci 41:237–244

    Article  Google Scholar 

  • Ondrasik M, Kopecky M (2014) Rock pore structure as main reason of rock deterioration. Stud Geotech Mech 36(1):79–88

    Google Scholar 

  • Özbek A (2014) Investigation of the effects of wetting–drying and freezing–thawing cycles on some physical and mechanical properties of selected ignimbrites. Bull Eng Geol Environ 73:595–609

    Article  Google Scholar 

  • Özdemir Y, Karaoğlu Ö, Tolluoğlu AÜ, Güleç N (2006) Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolia High Plateau): the most recent post-collisional volcanism in Turkey. Chem Geol 226:189–211

    Article  Google Scholar 

  • Özdemir Y, Akkaya İ, Oyan V, Kelfoun K (2016) A debris avalanche at Süphan stratovolcano (Turkey) and implications for hazard evaluation. Bull Volcanol. https://doi.org/10.1007/s00445-016-1007-6

    Google Scholar 

  • Özvan A, Dinçer İ, Akin M, Oyan V, Tapan M (2015) Experimental studies on ignimbrite and the effect of lichens and capillarity on the deterioration of Seljuk Gravestones. Eng Geol 185:81–95

    Article  Google Scholar 

  • Prikryl R (2013) Effect of salt crystallisation on the shear behaviour of masonry walls: an experimental study. Q J Eng Geol Hydrogeol 46(4):377–390

    Article  Google Scholar 

  • RILEM (1980) Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Commission 25-PEM. Mater Struct 13:175–253

    Google Scholar 

  • Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34(9):1613–1624

    Article  Google Scholar 

  • Siegesmund S, Dürrast H (2011) Physical and mechanical properties of rocks. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Springer, Berlin, pp 97–225

    Chapter  Google Scholar 

  • Şimsek O, Erdal M (2004) Ahlat taşının (ignimbrit) bazı mekanik ve fiziksel özeliklerinin araştırılması. Gazi Üniversitesi Fen Bilimleri Dergisi 17(4):71–78 (in Turkish)

    Google Scholar 

  • Stück H, Forgó LZ, Rüdrich J, Siegesmund S, Török A (2008) The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions. Environ Geol 56(3–4):699–713

    Article  Google Scholar 

  • Tan X, Chen W, Yang J, Cao J (2011) Laboratory investigations on the mechanical properties degradation of granite under freeze–thaw cycles. Cold Reg Sci Technol 68:130–138

    Article  Google Scholar 

  • Topal T (2002) Quantification of weathering depths in slightly weathered tuffs. Environ Geol 42(6):632–641

    Article  Google Scholar 

  • Topal T, Doyuran V (1997) Engineering geological properties and durability assessment of the Cappadocian tuff. Eng Geol 47:175–187

    Article  Google Scholar 

  • Topal T, Doyuran V (1998) Analyses of deterioration of the Cappadocian tuff, Turkey. Environ Geol 34(1):5–20

    Article  Google Scholar 

  • Topal T, Sözmen B (2003) Deterioration mechanisms of tuffs in Midas monument. Eng Geol 68:201–223

    Article  Google Scholar 

  • Topal T, Witte ED, Dupas M (1998) Pore size distribution characteristics and durability of the Cappadocian tuff. In: 8th international IAEG congress, Balkema, Rotterdam

  • Török Á, Vogt T, Löbens S, Forgó LZ, Siegesmund S, Weisss T (2005) Weathering forms of rhyolite tuffs. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 156(1):177–187

    Article  Google Scholar 

  • Török Á, Forgó LZ, Vogt T, Löbens S, Siegesmund S, Weisss T (2007) The influence of lithology and pore-size distribution on the durability of acid volcanic tuffs, Hungary. Geol Soc Lond Spec Publ 271(1):251–260

    Article  Google Scholar 

  • TS EN 12371 (2002) Doğal Taşlar—Deney Metotları—Dona Dayanım Tayini. Türk Standartları Enstitüsü, Ankara (in Turkish)

    Google Scholar 

  • Vacchiano CD, Incarnato L, Scarfato P, Acierno D (2008) Conservation of tuff-stone with polymeric resins. Constr Build Mater 22:855–865

    Article  Google Scholar 

  • Wedekind W, Ruedrich J, Siegesmund S (2011) Natural building stones of Mexico Tenochtitlan: their use, weathering and rock properties at the Templo Mayor, Palace Heras Soto and the Metropolitan Cathedral. Environ Earth Sci 63:1787–1798

    Article  Google Scholar 

  • Wedekind W, López-Doncel R, Dohrmann R, Kocher M, Siegesmund S (2013) Weathering of volcanic tuff rocks caused by moisture expansion. Environ Earth Sci 69(4):1203–1224

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Scientific Research Projects Office of Yüzüncü Yıl University (YYU-BAP, Project Number 2012-MIM-B011). Dr. Vural Oyan and Dr. Mücip Tapan are greatly acknowledged for their support during research. The authors deeply thank the anonymous reviewer of the manuscript for valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutluhan Akın.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akın, M., Özvan, A., Dinçer, İ. et al. Evaluation of the physico-mechanical parameters affecting the deterioration rate of Ahlat ignimbrites (Bitlis, Turkey). Environ Earth Sci 76, 827 (2017). https://doi.org/10.1007/s12665-017-7175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7175-7

Keywords

Navigation