Advertisement

Environmental Earth Sciences

, 76:806 | Cite as

Accumulation and phytostabilization of As, Pb and Cd in plants growing inside mine tailings reforested in Zacatecas, Mexico

  • Miguel Angel Salas-LuévanoEmail author
  • J. A. Mauricio-Castillo
  • M. L. González-Rivera
  • H. R. Vega-Carrillo
  • S. Salas-Muñoz
Original Article

Abstract

The aim of this research was to identify plant species with potential to accumulate and stabilize arsenic (As), lead (Pb) and cadmium (Cd) in mine tailings reforested and naturally recolonized locations in a semiarid region of Zacatecas, Mexico. Plant shoots from 44 species and their rhizospheric soils were analyzed for As, Pb and Cd concentration using atomic absorption spectroscopy. Most represented plant families were Asteraceae, Poaceae, Fabaceae and Cactaceae. The highest concentrations in shoots were As, followed by Pb and Cd. Among herbaceous species, Bouteloua gracilis showed the highest bioconcentration factor (BCF) of As, while Plantago lanceolata showed the highest bioconcentration factor of Pb. The shrub species with highest concentration of As in the rhizospheric soil were Opuntia robusta, Melilotus alba, Baccharis neglecta and Arundo donax (near BCF to 1.0). Similar results were observed in trees Casuarina equisetifolia, Prosopis laevigata, Fraxinus uhdei and Eucalyptus globulus. In addition, Tillandsia recurvata showed a suitable indicator of atmospheric deposition to As. In general, the results suggest that these species can be effective for tailings reforestation with the possibility to enclose potentially toxic elements. Specially, C. equisetifolia which is abundant, having the potential for future applications in other contaminated sites with different types of mine tailings or abandoned mines from arid and semiarid zones.

Keywords

Reforestation Mine waste Metallophytes Stabilization Casuarina 

References

  1. Aldrich MV, Ellzey JT, Peralta-Videa JR, Gonzalez JH, Gardea-Torresdey JL (2004) Lead uptake and the effects of EDTA on lead-tissue concentrations in the desert species mesquite (Prosopis spp.). Int J Phytoremediat 6(3):195–207CrossRefGoogle Scholar
  2. Armienta MA, Ongley LK, Rodríguez R, Cruz O, Mango H, Villaseñor G (2008) Arsenic distribution in mesquite (Prosopis laevigata) and huizache (Acacia farnesiana) in the Zimapán mining area, México. Geochem-Explor Environ Anal 8(2):191–197CrossRefGoogle Scholar
  3. Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerance plants. In: Shaw A (ed) Evolutionary aspects. CRC Press, Boca Raton, pp 155–177Google Scholar
  4. Baker AJM, Whiting SN (2002) In search of the holy grail-a further step in understanding metal hyperaccumulation. New Phytol 155:1–7CrossRefGoogle Scholar
  5. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107Google Scholar
  6. Balleza JJ, Villaseñor JL (2011) Contribución del estado de Zacatecas (México) a la conservación de la riqueza florística del Desierto Chihuahuense. Acta Bot Mex 94:61–89CrossRefGoogle Scholar
  7. Barrutia O, Artetxe U, Hernández A, Olano JM, García-Plazaola JI, Garbisu C, Becerril JM (2011) Native plant communities in an abandoned Pb–Zn mining area of Northern Spain: Implications for phytoremediation and germplasm preservation. Int J Phytoremediat 13:256–270CrossRefGoogle Scholar
  8. Batty LC (2005) The potential importance of mine sites for biodiversity. Mine Water Environ 24(2):101–103CrossRefGoogle Scholar
  9. Batty LC, Younger PL (2004) The use of waste materials in the passive remediation of mine water pollution. Surv Geophys 25(1):55–67CrossRefGoogle Scholar
  10. Bech J, Poschenrieder C, Llugany M, Barceló J, Tume P, Tobias FJ, Barranzuela JL, Berti WR, Cunningham SD (2000) Phytostabilization of metals. Phytoremediation of toxic metals—Using plants to clean up the environment. In: Ensley BD (ed) Raskin I. John Wiley & Sons, New York, pp 71–88Google Scholar
  11. Boularbah A, Schwartz C, Bitton G, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere 63:802–810CrossRefGoogle Scholar
  12. Bu-Olayan AH, Thomas BV (2002) Biomonitoring studies on the lead levels in mesquite (Prosopis juliflora) in the arid ecosystem of Kuwait. Kuwait J Sci Eng 29(1):65–73Google Scholar
  13. Calderón RG, Rzedowski J (2001) Flora Fanerogámica del Valle de México. Instituto de Ecología, A.C. CONABIO México. p 1406Google Scholar
  14. Carrillo-González R, González-Chávez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144:84–92CrossRefGoogle Scholar
  15. Castañeda MAG, Chaparro MAE, Chaparro MAE, Böhnel HN (2016) Magnetic properties of Tillandsia recurvata L. and its use for biomonitoring a Mexican metropolitan area. Ecol Indic 60:125–136CrossRefGoogle Scholar
  16. Castro-Larragoitia J, Kramar U, Monroy-Fernández MG, Viera-Décida F, García-González EG (2013) Heavy metal and arsenic dispersion in a copper-skarn mining district in a Mexican semi-arid environment: sources, pathways and fate. Environ Earth Sci 69:1915–1929CrossRefGoogle Scholar
  17. Cetinkaya G, Sozen N (2011) Plant species potentially useful in the phytostabilization process for the abandoned CMC mining site in Northern Cyprus. Int J Phytoremed 13:681–691CrossRefGoogle Scholar
  18. Chakroun HK, Souissi F, Bouchardon JL, Souissi R, Moutte J, Faure O, Remon E, Abdeljaoued S (2010) Transfer and accumulation of lead, zinc, cadmium and copper in plants growing in abandoned mining-district area. Afr J Environ Sci Technol 4(10):651–659Google Scholar
  19. CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) (2016) Malezas de México. www.conabio.gob.mx/malezasdemexico/asteraceae/Dalea…/fichas/ficha.htm
  20. Conesa HM (2003) Informe Agronómico sobre la finca de “Las Jacobas”. Cartagena, Spain: Universidad Politécnica de Cartagena. Technical reportGoogle Scholar
  21. Conesa HM, Garcia G, Faz A, Arnaldos R (2007a) Dynamics of metal tolerant plant communities’ development in mine tailings from the Cartagena-La Union Mining District (SE Spain) and their interest for further revegetation purposes. Chemosphere 68:1180–1185CrossRefGoogle Scholar
  22. Conesa HM, Robinson BH, Schulin R, Nowack B (2007b) Growth of Lygeumspartum in acid mine tailings: response of plants developed from seedlings, rhizomes and at field conditions. Environ Pollut 145:700–707CrossRefGoogle Scholar
  23. Curtis JT, McIntosh RP (1951) An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 32:476–496CrossRefGoogle Scholar
  24. Da Rosa CD, Lyon JS (1997) Golden dreams, poisoned streams: how reckless mining pollutes America’s waters and how we can stop it. Mineral Policy Center, Washington, DCGoogle Scholar
  25. Dahmani-Muller H, van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238CrossRefGoogle Scholar
  26. Dimitrova I, Yurukova L (2005) Bioindication of anthropogenic pollution with Plantago lanceolata (Plantaginaceae): metal accumulation, morphological and stomatal leaf characteristics. Phytol Balcan 11(1):89–96Google Scholar
  27. Dudka S, Adriano DC (1997) Environmental impact of metal ore mining and processing: a Review. J Environ Qual 26(3):590–602CrossRefGoogle Scholar
  28. Enríquez EED, Koch SD, González EMS (2003) Flora y vegetación de la sierra de órganos, municipio de Sombrerete, Zacatecas, México. Acta Bot Mex 64:45–89CrossRefGoogle Scholar
  29. EPA (Environmental Protection Agency) (1992) Acid Digestion of Sediments, Sludge, and Soils, Method 3050AGoogle Scholar
  30. Espinosa-Reyes G, González-Mille DJ, Ilizaliturri-Hernández, CA, Mejía-Saavedra JV, Cilia-López G, Costilla-Salazar R, Díaz-Barriga F (2014) Effect of mining activities in biotic communities of Villa de la Paz, San Luis Potosi, Mexico. BioMed Res Int 1–13.  http://dx.doi.org/10.1155/2014/165046
  31. Flores-Tavizón E, Alarcón-Herrera MT, González-Elizondo S, Olguín EJ (2003) Arsenic tolerating plants from mine sites and hot springs in the semi-arid region of Chihuahua, Mexico. Acta Biotechnol 23(2–3):113–119CrossRefGoogle Scholar
  32. Franco-Hernández MO, Vásquez-Murrieta MS, Patiño-Siciliano A, Dendooven L (2010) Heavy metals concentration in plants growing on mine tailings in Central Mexico. Biores Technol 101:3864–3869CrossRefGoogle Scholar
  33. Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72CrossRefGoogle Scholar
  34. García-Salgado S, García-Cassillas D, Quijano-Nieto MA, Bonilla-Simón MM (2012) Arsenic and heavy metals uptake and accumulation in naïve plant species from soils polluted by mining activities. Water Air Soil Poll 223:559–572CrossRefGoogle Scholar
  35. Gisbert C, Almela C, Vélez DJ, López-Moya R, de Haro A, Serrano R, Montoro R, Navarro-Aviñó J (2008) Identification of As accumulation plant species growing on highly contaminated soils. Int J Phytoremediat 10:185–196CrossRefGoogle Scholar
  36. Goix S, Point D, Oliva P, Polve M, Duprey JL, Mazurek H, Guislain L, Huayta C, Barbieri FL, Gardon J (2011) Influence of source distribution and geochemical composition of aerosols on children exposure in the large polymetallic mining region of the Bolivian Altiplano. Sci Total Environ 412–413:170–184CrossRefGoogle Scholar
  37. Grattan JP, Gillmore GK, Gilbertson DD, Pyatt FB, Huntf CO, McLareng SJ, Phillips PS, Denman A (2004) Radon and ‘King Solomon’s Miners’: Faynan Orefield, Jordanian Desert. Sci Total Environ 319:99–113CrossRefGoogle Scholar
  38. Hernández HM, Gómez-Hinostrosa C, Goettsch B (2004) Checklist of Chihuahuan desert Cactaceae. Harvard Pap Bot 9:51–68Google Scholar
  39. Herrera AY (2001) Las Gramíneas de Durango. CIIDIR Unidad Durango, Instituto Politécnico Nacional - Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Durango, Dgo. p 478Google Scholar
  40. Kramer PA, Zabowski D, Scherer GRL (2000) Native plant restoration of copper mine tailings: II. Field survival, growth, and nutrient uptake. J Environ Qual 29:1770–1777CrossRefGoogle Scholar
  41. Mains D, Craw D, Rufaut CG, Smith CMS (2006) Phytostabilization of gold mine tailings from New Zealand. Part 2: experimental evaluation of arsenic mobilization during revegetation. Int J Phytoremed 8:163–183CrossRefGoogle Scholar
  42. McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Op Biotechnol 14:277–282CrossRefGoogle Scholar
  43. McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56CrossRefGoogle Scholar
  44. Meeinkuirt W, Pokethitiyook P, Kruatrachue M, Tanhan P, Chaiyarat R (2012) Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. Int J Phytoremediat 14:925–938CrossRefGoogle Scholar
  45. Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-An emerging remediation technology. Environ Health Perspect 116(3):278–283CrossRefGoogle Scholar
  46. Montaño NM, García-Sánchez R, Morales-Gómez F, Ochoa G (2008) Arbuscular mycorrhizae in Mesquite fertile islands in two semiarid shrubs: their effect on Bouteloua curtipendula morphological development. In: Montaño NM et al (eds) Arbuscular mycorrhizae in arid and semiarid ecosystems. Mundi-Prensa, INESEMARNAT, UAM-Iztapalapa, FES-Zaragoza-UNAM, DF, México, pp 185–202Google Scholar
  47. Ortega-Larrocea MP, Xoconostle-Cázares B, Maldonado-Mendoza IE, Carrillo-González R, Hernández-Hernández J, Garduño MD, López-Meyer M, Gómez-Flores L, González-Chávez MCA (2010) Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico. Environ Pollut 158:1922–1931CrossRefGoogle Scholar
  48. Ortiz-Calderón C, Alcaide O, Kao JL (2008) Copper distribution in leaves and roots of plants growing on a copper mine-tailing storage facility in northern Chile Rev Chil. Hist Nat 81(4):489–499Google Scholar
  49. Oyarzún J, Oyarzún R (2011) Sustainable development threats, inter-sector conflicts and environmental policy requirements in the arid, mining rich, northern Chile territory. Sustain Dev 19(4):263–274CrossRefGoogle Scholar
  50. Pollard AJ (1980) Diversity of metal tolerances in Plantago lanceolata L. from the Southeastern United States. Plant Physiol 86:109–117Google Scholar
  51. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29:529–540CrossRefGoogle Scholar
  52. Querol X, Alastuey A, Moreno N, Alvarez-Ayuso E, Garcia-Sanchez A, Cama J, Ayora C, Simon M (2006) Immobilization of heavy metals in polluted soils by the addition of zeolitic materials synthesized from coal fly ash. Chemosphere 62:171–180CrossRefGoogle Scholar
  53. Raso I, Carrizales L, Castro J, Díaz-Barriga F, Monroy M (2004) Arsenic and heavy metals pollution of soil, water and sediments in a semi-arid climate mining area in Mexico. Water Air Soil Poll 152(1–4):129–152Google Scholar
  54. Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  55. Robles-Arenas VM, Rodríguez R, García CJI, Manteca JI, Candela L (2006) Sulphide-mining impacts in the physical environment: Sierra de (SE Spain) case study. Environ Geol 51:47–64CrossRefGoogle Scholar
  56. Rzedowski G. C. de, J. Rzedowski y colaboradores (2005) Flora fanerogámica del Valle de México. Instituto de Ecología, A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Pátzcuaro, Michoacán (Edición digital: INECOL 2010)Google Scholar
  57. Salas-Luévano MA, Vega-Carrillo HR (2016) Environmental impact in a rural community due to a lead recycling plant in Zacatecas, Mexico. Environ Earth Sci 75(5):408.  https://doi.org/10.1007/s12665-016-5247-8 CrossRefGoogle Scholar
  58. Salas-Luévano MA, Manzanares-Acuña E, Letechipía-de León C, Vega-Carrillo HR (2009) Tolerant and hyperaccumulators autochthonous plant species from mine tailing disposal sites. Asian J Exp Sci 23(1):27–32Google Scholar
  59. Sampat P (2003) Scrapping mining dependence. In: Bright C et al (eds) State of the World: 2003, chapter 6. The Worldwatch Institute, Washington, DC, pp 110–129Google Scholar
  60. Sánchez-López AS, González-Chávez MCA, Carrillo-González R, Vangronsveld J, Díaz-Garduño M (2015) Wild flora of mine tailings: Perspectives for use in phytoremediation of potentially toxic elements in a semi-arid region in Mexico. Int J Phytoremediat 17(5):476–484CrossRefGoogle Scholar
  61. Santibañez C, Fuente LM, Bustamante E, Silva S, León-Lobos P, Ginocchio R (2012) Potential use of organic and hard rock mine wastes on aided phytostabilization of large scale mine tailings under semiarid mediterranean climatic conditions: Short-term field study. Appl Environ Soil Sci.  https://doi.org/10.1155/2012/895817 Google Scholar
  62. Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228CrossRefGoogle Scholar
  63. UNEP (2000) Mining and sustainable development II: challenges and perspectives. Ind Environ 23:95Google Scholar
  64. USDA (2016) Natural Resources Conservation Service. National Soil Survey Handbook, title 430-VI. http://soils.usda.gov/technical/handbook/. Accessed 03 Nov 2016
  65. Vázquez-Yanes C, Batis-Muñoz AI, Alcocer-Silva MI, Gual-Díaz M, Sánchez CD (1999) Árboles y arbustos potencialmente valiosos para la restauración ecológica y la reforestación. CONABIO—Instituto de Ecología, UNAMGoogle Scholar
  66. Vibrans H (2009) Malezas de México. http://www.conabio.gob.mx/malezasdemexico/2inicio/home-malezas.mexico.htm. Accessed 22 May 2016
  67. Vollenweider P, Cosio C, Gunthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Part II Microlocalization and cellular effects of cadmium. Environ Exp Bot 58:25–40CrossRefGoogle Scholar
  68. Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffré T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116CrossRefGoogle Scholar
  69. Wong JWC, Ip CM, Wong MH (1998) Acid-forming capacity of lead–zinc mine tailings and its implications for mine rehabilitation. Environ Geochem Health 20:149–155CrossRefGoogle Scholar
  70. Yoon J, Cao X, Zhou O, Ma QL (2006) Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Unidad Académica de AgronomíaUniversidad Autónoma de ZacatecasZacatecasMexico
  2. 2.Unidad Académica de Estudios NuclearesUAZZacatecasMexico
  3. 3.CONACYT-INIFAPZacatecasMexico

Personalised recommendations