Skip to main content
Log in

Distribution and source identification of heavy metals in the sediments of a river flowing an urbanization gradient, Eastern China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Heavy metal contamination is of great concern in rapidly urbanizing areas. A basin-basis study on the impacts of urbanization on the heavy metal contamination in surface sediments from the Qinhuai River, Eastern China, was conducted, focusing on the spatial variation and source appointments. All of the sampling sites can be divided into three groups based on the hierarchical cluster analysis (HCA) results, which correspond well to the pollution levels of the studied heavy metals in the sediments of the rural, suburban, and urban sections of the Qinhuai River. The relationship between the heavy metal and the Al/Si ratio of sediments varied distinctly with the metal species and urbanization degree of the river sections. Correlation analysis and HCA highlighted that zinc appeared to be a fairly efficient geochemical signature of urban-related heavy metal contamination. The contributions derived from urban activities ranged from 35.9% for Ni to 96.1% for Cu, as estimated by a multilinear regression of the absolute principal component score method (MLR-ACPS). Agricultural activities had a clear impact on As, Pb, and Cu contamination of the sediment. Lithologic sources contributed a significant portion of Ni, Cr, and As to the sediment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bouchez J, Lupker M, Gaillardet J, France-Lanord C, Maurice L (2011) How important is it to integrate riverine suspended sediment chemical composition with depth? Clues from Amazon River depth-profiles. Geochim Cosmochim Acta 75:6955–6970

    Article  Google Scholar 

  • Bouchez J et al (2012) Floodplains of large rivers: weathering reactors or simple silos? Chem Geol 332:166–184

    Article  Google Scholar 

  • Cai L et al (2012) Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol Environ Saf 78:2–8. doi:10.1016/j.ecoenv.2011.07.004

    Article  Google Scholar 

  • Chambers LG et al (2016) Developing the scientific framework for urban geochemistry. Appl Geochem 67:1–20. doi:10.1016/j.apgeochem.2016.01.005

    Article  Google Scholar 

  • Chandrasekaran A, Mukesh MV, Chidambaram S, Singarasubramanian SR, Rajendran S, Muthukumarasamy R, Tamilselvi M (2015) Assessment of heavy metal distribution pattern in the sediments of Tamirabarani river and estuary, east coast of Tamil Nadu, India. Environ Earth Sci 73:2441–2452. doi:10.1007/s12665-014-3593-y

    Article  Google Scholar 

  • Chen J, Gaillardet J, Louvat P (2008) Zinc Isotopes in the Seine River Waters, France: a probe of anthropogenic contamination. Environ Sci Technol 42:6494–6501. doi:10.1021/es800725z

    Article  Google Scholar 

  • Councell TB, Duckenfield KU, Landa ER, Callender E (2004) Tire-wear particles as a source of zinc to the environment. Environ Sci Technol 38:4206–4214

    Article  Google Scholar 

  • Dhivert E, Grosbois C, Courtin-Nomade A, Bourrain X, Desmet M (2016) Dynamics of metallic contaminants at a basin scale—spatial and temporal reconstruction from four sediment cores (Loire fluvial system, France). Sci Total Environ 541:1504–1515. doi:10.1016/j.scitotenv.2015.09.146

    Article  Google Scholar 

  • Divers MT, Elliott EM, Bain DJ (2013) Constraining nitrogen inputs to urban streams from leaking sewers using inverse modeling: implications for dissolved inorganic nitrogen (DIN) retention in urban environments. Environ Sci Technol 47:1816–1823. doi:10.1021/es304331m

    Article  Google Scholar 

  • Fu C, Wang W, Pan J, Wang H, Yin Z (2014a) Spatial-temporal variation and source apportionment of soil heavy metals in peri-urban area: a case study of Zhetang town, Nanjing. Acta Pedol Sin 51:1066–1077 (in Chinese)

    Google Scholar 

  • Fu J et al (2014b) Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors. J Hazard Mater 270:102–109. doi:10.1016/j.jhazmat.2014.01.044

    Article  Google Scholar 

  • Gao W, Du Y, Gao S, Ingels J, Wang D (2015) Heavy metal accumulation reflecting natural sedimentary processes and anthropogenic activities in two contrasting coastal wetland ecosystems, Eastern China. J Soil Sediment 16:1093–1108. doi:10.1007/s11368-015-1314-0

    Article  Google Scholar 

  • Hayzoun H et al (2015) Organic carbon, and major and trace element dynamic and fate in a large river subjected to poorly-regulated urban and industrial pressures (Sebou River, Morocco). Sci Total Environ 502:296–308. doi:10.1016/j.scitotenv.2014.09.014

    Article  Google Scholar 

  • Horstman EL (1957) The distribution of lithium, rubidium and caesium in igneous and sedimentary rocks. Geochim Cosmochim Acta 12:1–28

    Article  Google Scholar 

  • Kaushal SS et al (2005) Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci USA 102:13517–13520

    Article  Google Scholar 

  • Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199. doi:10.1016/j.tree.2005.12.006

    Article  Google Scholar 

  • Kelepertzis E (2014) Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese Greece. Geoderma 221–222:82–90. doi:10.1016/j.geoderma.2014.01.007

    Article  Google Scholar 

  • Kuusisto-Hjort P, Hjort J (2013) Land use impacts on trace metal concentrations of suburban stream sediments in the Helsinki region, Finland. Sci Total Environ 456:222–230

    Article  Google Scholar 

  • Le Pape P, Ayrault S, Quantin C (2012) Trace element behavior and partition versus urbanization gradient in an urban river (Orge River, France). J Hydrol 472:99–110

    Article  Google Scholar 

  • Lei C, Ying XU, Mingzhu ZHU, Shixing LI (2008) Total contents and species of heavy metals in sediment of Qinhuai river. J Agro Environ Sci 27:1385–1390 (in Chinese)

    Google Scholar 

  • Li H-B et al (2012a) Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks. Sci Total Environ 432:202–209

    Article  Google Scholar 

  • Li H, Yu S, Li G, Deng H (2012b) Lead contamination and source in Shanghai in the past century using dated sediment cores from urban park lakes. Chemosphere 88:1161–1169

    Article  Google Scholar 

  • Liang F et al (2010) Lead in children’s blood is mainly caused by coal-fired ash after phasing out of leaded gasoline in Shanghai. Environ Sci Technol 44:4760–4765

    Article  Google Scholar 

  • Liao Q et al (2011) Geochemical baseline values of elements in soil of Jiangsu Province. Geol China 38:1363–1378 (in Chinese)

    Google Scholar 

  • Lu R (1999) Methods of soil agrochemistry analysis. Agricultural Science and Technology Press, Beijing (In Chiese)

    Google Scholar 

  • Lu Y, Gong Z, Zhang G, Burghardt W (2003) Concentrations and chemical speciations of Cu, Zn, Pb and Cr of urban soils in Nanjing, China. Geoderma 115:101–111. doi:10.1016/S0016-7061(03)00079-X

    Article  Google Scholar 

  • Lu Y, Gong Z, Zhang G, Zhang B (2004) Heavy metal concentration in Nanjing urban soils and their affecting factors. J Appl Ecol 15:123–126 (in Chinese)

    Google Scholar 

  • Lu Y, Jia C, Zhang G, Zhao Y, Wilson MA (2016) Spatial distribution and source of potential toxic elements (PTEs) in urban soils of Guangzhou, China. Environ Earth Sci 75:1–15. doi:10.1007/s12665-015-5190-0

    Article  Google Scholar 

  • Ma X et al (2016) Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 144:264–272. doi:10.1016/j.chemosphere.2015.08.026

    Article  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geo J 2:108–118

    Google Scholar 

  • Owens P, Walling D, Carton J, Meharg A, Wright J, Leeks G (2001) Downstream changes in the transport and storage of sediment-associated contaminants (P, Cr and PCBs) in agricultural and industrialized drainage basins. Sci Total Environ 266:177–186

    Article  Google Scholar 

  • Pan L-b, Ma J, X-l Wang, Hou H (2016) Heavy metals in soils from a typical county in Shanxi Province, China: levels, sources and spatial distribution. Chemosphere 148:248–254. doi:10.1016/j.chemosphere.2015.12.049

    Article  Google Scholar 

  • Paul M, Meyer J (2008) Streams in the Urban Landscape. In: Marzluff J et al. (eds) Urban Ecology. Springer US, pp 207-231. doi:10.1007/978-0-387-73412-5_12

  • Pouyat RV et al (2008) Response of forest soil properties to urbanization gradients in three metropolitan areas. Landsc Ecol 23:1187–1203

    Article  Google Scholar 

  • Race M, Nabelkova J, Fabbricino M, Pirozzi F, Raia P (2015) Analysis of heavy metal sources for urban creeks in the Czech Republic. Water Air Soil Pollut 226:1–10. doi:10.1007/s11270-015-2579-z

    Article  Google Scholar 

  • Rath P, Panda U, Bhatta D, Sahu K (2009) Use of sequential leaching, mineralogy, morphology and multivariate statistical technique for quantifying metal pollution in highly polluted aquatic sediments—a case study: Brahmani and Nandira Rivers, India. J Hazard Mater 163:632–644

    Article  Google Scholar 

  • Robson M, Spence K, Beech L (2006) Stream quality in a small urbanised catchment. Sci Total Environ 357:194–207. doi:10.1016/j.scitotenv.2005.03.016

    Article  Google Scholar 

  • Song Y, Xie S, Zhang Y, Zeng L, Salmon LG, Zheng M (2006) Source apportionment of PM2.5 in Beijing using principal component analysis/absolute principal component scores and UNMIX. Sci Total Environ 372:278–286. doi:10.1016/j.scitotenv.2006.08.041

    Article  Google Scholar 

  • Song Y, Ji J, Yang Z, Yuan X, Mao C, Frost RL, Ayoko GA (2011) Geochemical behavior assessment and apportionment of heavy metal contaminants in the bottom sediments of lower reach of Changjiang River. CATENA 85:73–81. doi:10.1016/j.catena.2010.12.009

    Article  Google Scholar 

  • Steele MK, Aitkenhead-Peterson JA (2011) Long-term sodium and chloride surface water exports from the Dallas/Fort Worth region. Sci Total Environ 409:3021–3032. doi:10.1016/j.scitotenv.2011.04.015

    Article  Google Scholar 

  • Streets DG, Hao J, Wu Y, Jiang J, Chan M, Tian H, Feng X (2005) Anthropogenic mercury emissions in China. Atmos Environ 39:7789–7806. doi:10.1016/j.atmosenv.2005.08.029

    Article  Google Scholar 

  • Thapalia A, Borrok DM, Van Metre PC, Musgrove M, Landa ER (2010) Zn and Cu isotopes as tracers of anthropogenic contamination in a sediment core from an urban lake. Environ Sci Technol 44:1544–1550

    Article  Google Scholar 

  • Thurston GD, Spengler JD (1985) A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos Environ 19:9–25

    Article  Google Scholar 

  • Nations U (2015) World urbanization prospectives: the 2014 revision. United Nations Population Division, Washington DC

    Google Scholar 

  • Varol M, Şen B (2012) Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey. CATENA 92:1–10. doi:10.1016/j.catena.2011.11.011

    Article  Google Scholar 

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366:701–721. doi:10.1016/j.scitotenv.2005.09.005

    Article  Google Scholar 

  • Wei B, Yang L (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107

    Article  Google Scholar 

  • Wei F, Chen J, Wu Y, Zhen C (1991) Study on the background contents on 61 elements of soils. China Environ Sci 12:12–19

    Google Scholar 

  • Xia X, Chen X, Liu R, Liu H (2011) Heavy metals in urban soils with various types of land use in Beijing, China. J Hazard Mater 186:2043–2050. doi:10.1016/j.jhazmat.2010.12.104

    Article  Google Scholar 

  • Yang Z, Wang Y, Shen Z, Niu J, Tang Z (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J Hazard Mater 166:1186–1194. doi:10.1016/j.jhazmat.2008.12.034

    Article  Google Scholar 

  • Yin A, Gao C, Liu Y, Zhou H (2011) Distribution and contamination evaluation of toxic trace elements in surface sediments of Qinhuai River in Eastern China’s Jiangsu province. Environ Chem 30:1912–1918 (in Chinese)

    Google Scholar 

  • Zhang G-L, Yang F-G, Zhao Y-G, Zhao W-J, Yang J-L, Gong Z-T (2005) Historical change of heavy metals in urban soils of Nanjing, China during the past 20 centuries. Environ Int 31:913–919. doi:10.1016/j.envint.2005.05.035

    Article  Google Scholar 

  • Zhao L, Xu Y, Hou H, Shangguan Y, Li F (2014) Source identification and health risk assessment of metals in urban soils around the Tanggu chemical industrial district, Tianjin, China. Sci Total Environ 468–469:654–662. doi:10.1016/j.scitotenv.2013.08.094

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, No. 41271467).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Yin, A., Yang, X. et al. Distribution and source identification of heavy metals in the sediments of a river flowing an urbanization gradient, Eastern China. Environ Earth Sci 76, 745 (2017). https://doi.org/10.1007/s12665-017-7068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7068-9

Keywords

Navigation