Skip to main content

Advertisement

Log in

Stream chloride concentrations as a function of land use: a comparison of an agricultural watershed to an urban agricultural watershed

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The concentration of chloride (Cl) in streams in northern regions has increased as a result of applications of deicers. This study focused on quantifying the relationship between land use and stream Cl concentrations. The study area comprises two adjacent watersheds in central Illinois, with similar geology and climate but different land uses (agricultural and urban). GIS analysis delineated watershed land use and calculated road surface areas. Stream water samples were collected and analyzed for anionic composition. During the winter months, streams dominated with urban land use experienced a 20-fold increase in Cl concentrations (range between 36 and 1350 mg L−1); Cl concentrations in agricultural dominated streams also increased, but the increase was smaller (3X) and concentrations remained low (between 11 and 58 mg L−1). As road salts are not the sole source of Cl in a stream, Cl and bromide (Br) mass ratios (Cl/Br) and Cl and sodium (Na) molar ratios ([Cl]/[Na]) were used to identify potential sources of Cl. The ratios indicate urbanized watersheds were impacted by road salts; agricultural watersheds ratios indicate other anthropogenic sources. A nonlinear relationship between urban land use and stream Cl concentrations indicates urban land use as low as 23% results in elevated Cl concentrations (greater than 150 mg L−1) in stream waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allert AL, Cole-Neal CL, Fairchild JF (2012) Toxicity of chloride under winter low-flow conditions in an urban watershed in central Missouri, USA. Bull Environ Contam Toxicol 89:296–301. doi:10.1007/s00128-012-0673-0

    Article  Google Scholar 

  • Bäckström M, Nilsson U, Håkansson K, Allard B, Karlsson S (2003) Speciation of heavy metals in road runoff and roadside total deposition. Water Air Soil Pollut 147:343–366. doi:10.1023/A:1024545916834

    Article  Google Scholar 

  • Beach V, Peterson EW (2013) Variation of hyporheic temperature profiles in a low gradient third-order agricultural stream: a statistical approach. Open J Modern Hydrol 3:55–66. doi:10.4236/ojmh.2013.32008

    Article  Google Scholar 

  • Birge W, Black J, Westerman A, Short T, Taylor S, Bruser D, Wallingford E (1985) Recommendations on numerical values for regulating iron and chloride concentrations for the purpose of protecting warm water species of aquatic life in the Commonwealth of Kentucky. Memorandum of Agreement 5429

  • Bollinger TK, Mineau P, Wickstrom ML (2005) Toxicity of sodium chloride to house sparrows (Passer domesticus). J Wildl Dis 41:363–370. doi:10.7589/0090-3558-41.2.363

    Article  Google Scholar 

  • Bowen GS, Hinton MJ (1998) The temporal and spatial impacts of road salt on streams draining the Greater Toronto Area. In: Proceedings of the groundwater in a watershed context symposium, Ontario Ministry of the Environment and Geological Survey of Canada, Burlington, Ontario, pp 303–309

  • Chadwick MA, Feminella JW (2001) Influence of salinity and temperature on the growth and production of a freshwater mayfly in the Lower Mobile River, Alabama. Limnol Oceanogr 46:532–542. doi:10.4319/lo.2001.46.3.0532

    Article  Google Scholar 

  • Church PE, Friesz PJ (1993) Effectiveness of highway drainage systems in preventing road-salt contamination of groundwater: preliminary findings. Transportation Research Record, Washington

  • Corsi SR, De Cicco LA, Lutz MA, Hirsch RM (2015) River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons. Sci Total Environ 508:488–497. doi:10.1016/j.scitotenv.2014.12.012

    Article  Google Scholar 

  • Crowther RA, Hynes HBN (1977) The effect of road deicing salt on the drift of stream benthos. Environ Pollut 14:113–126. doi:10.1016/0013-9327(77)90103-3

    Article  Google Scholar 

  • Cunningham MA, O’Reilly CM, Menking KM, Gillikin DP, Smith KC, Foley CM, Belli SL, Pregnall AM, Schlessman MA, Batur P (2009) The suburban stream syndrome: evaluating land use and stream impairments in the suburbs. Phys Geogr 30:269–284. doi:10.2747/0272-3646.30.3.269

    Article  Google Scholar 

  • David MB, Mitchell CA, Gentry LE, Salemme RK (2016) Chloride sources and losses in two tile-drained agricultural watersheds. J Environ Qual 45:341–348. doi:10.2134/jeq2015.06.0302

    Article  Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:338–350. doi:10.1111/j.1745-6584.1998.tb01099.x

    Article  Google Scholar 

  • Demers CL (1992) Effects of road deicing salt on aquatic invertebrates in four Adirondack streams. In: D’Itri FM (ed) Chemical deicers and the environment. Lewis Publishing, Boca Raton

    Google Scholar 

  • Dugan HA, Bartlett SL, Burke SM, Doubek JP, Krivak-Tetley FE, Skaff NK, Summers JC, Farrell KJ, McCullough IM, Morales-Williams AM, Roberts DC, Ouyang Z, Scordo F, Hanson PC, Weathers KC (2017) Salting our freshwater lakes. Proc Natl Acad Sci 114:4453–4458. doi:10.1073/pnas.1620211114

    Article  Google Scholar 

  • Environment Canada (2001) Priority substances list assessment report: road salts. Health Canada. Canadian Environmental Protection Act 1999. Minister of Public Works and Government Services

  • Evans M, Frick C (2001) The effects of road salts on aquatic ecosystems. WSTD Contribution Series No. 02-308. National Water Research Institute, Environmental Canada, Ottawa, Canada

  • Fay L, Shi X (2012) Environmental impacts of chemicals for snow and ice control: state of the knowledge. Water Air Soil Pollut 223:2751–2770. doi:10.1007/s11270-011-1064-6

    Article  Google Scholar 

  • Findlay SEG, Kelly VR (2011) Emerging indirect and long-term road salt effects on ecosystems. Ann NY Acad Sci 1223:58–68. doi:10.1111/j.1749-6632.2010.05942.x

    Article  Google Scholar 

  • Foos A (2003) Spatial distribution of road salt contamination of natural springs and seeps, Cuyahoga Falls, Ohio, USA. Environ Geol 44:14–19. doi:10.1007/s00254-002-0724-7

    Google Scholar 

  • Fraser D, Thomas ER (1982) Moose-vehicle accidents in Ontario: relation to highway salt. Wildl Soc Bull 1973–2006(10):261–265. doi:10.2307/3781015

    Google Scholar 

  • Gardner KM, Royer TV (2010) Effect of road salt application on seasonal chloride concentrations and toxicity in South-Central Indiana streams. J Environ Qual 39:1036–1042. doi:10.2134/jeq2009.0402

    Article  Google Scholar 

  • Godwin KS, Hafner SD, Buff MF (2003) Long-term trends in sodium and chloride in the Mohawk River, New York: the effect of fifty years of road-salt application. Environ Pollut 124:273–281. doi:10.1016/S0269-7491(02)00481-5

    Article  Google Scholar 

  • Hart B, Bailey P, Edwards R, Hortle K, James K, McMahon A, Meredith C, Swadling K (1991) A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210:105–144. doi:10.1007/BF00014327

    Article  Google Scholar 

  • Herlihy AT, Stoddard JL, Johnson CB (1998) The relationship between stream chemistry and watershed land cover data in the mid-Atlantic Region, U.S. In: Wieder RK, Novák M, Černý J (eds) Biogeochemical investigations at watershed, landscape, and regional scales: refereed papers from BIOGEOMON, the third international symposium on ecosystem behavior; co-sponsored by Villanova University and the Czech Geological Survey; held at Villanova University, Villanova Pennsylvania, USA, June 21–25, 1997. Springer, Dordrecht, pp 377–386

  • Howard KWF, Beck PJ (1993) Hydrogeochemical implications of groundwater contamination by road de-icing chemicals. J Contam Hydrol 12:245–268. doi:10.1016/0169-7722(93)90010-p

    Article  Google Scholar 

  • Howard KWF, Haynes J (1993) Groundwater contamination due to road de-icing chemicals–Salt balance implications. Geosci Can 20:1–8

    Google Scholar 

  • Jackson RB, Jobbágy EG (2005) From icy roads to salty streams. Proc Natl Acad Sci USA 102:14487–14488. doi:10.1073/pnas.0507389102

    Article  Google Scholar 

  • Joutti A, Schultz E, Pessala P, Nystén T, Hellstén P (2003) Ecotoxicity of alternative de-icers. J Soils Sediments 3:269–272. doi:10.1065/jss2003.07.080

    Article  Google Scholar 

  • Karraker NE, Gibbs JP, Vonesh JR (2008) Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecol Appl 18:724–734. doi:10.1890/07-1644.1

    Article  Google Scholar 

  • Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, Kelly VR, Band LE, Fisher GT (2005) Increased salinization of fresh water in the northeastern United States. Proc Natl Acad Sci USA 102:13517–13520. doi:10.1073/pnas.0506414102

    Article  Google Scholar 

  • Kelly WR (2008) Long-term trends in chloride concentrations in shallow aquifers near Chicago. Ground Water 46:772–781. doi:10.1111/j.1745-6584.2008.00466.x

    Google Scholar 

  • Kelly VR, Lovett GM, Weathers KC, Findlay SEG, Strayer DL, Burns DJ, Likens GE (2008) Long-term sodium chloride retention in a rural watershed: legacy effects of road salt on streawater concentration. Environ Sci Technol 42:410–415. doi:10.1021/es071391l

    Article  Google Scholar 

  • Kelly WR, Panno SV, Hackley KC (2009) Impacts of road salt on water resources in the Chicago region. In: 2009 UCOWR conference. Southern Illinois University, Carbondale

  • Keummel D (1992) The public’s right to wintertime traffic safety. In: 3rd annual international symposium on snow removal and Ice control technology. Transportation Research Board, Minneapolis

  • Koryak M, Stafford LJ, Reilly RJ, Magnuson PM (2001) Highway deicing salt runoff events and major ion concentrations along a small urban stream. J Freshw Ecol 16:125–134. doi:10.1080/02705060.2001.9663795

    Article  Google Scholar 

  • Labadia CF, Buttle JM (1996) Road salt accumulation in highway snow banks and transport through the unsaturated zone of the Oak Ridges Moraine, Southern Ontario. Hydrol Process 10:1575–1589. doi:10.1002/(SICI)1099-1085(199612)10:12<1575:AID-HYP502>3.0.CO;2-1

    Article  Google Scholar 

  • Lax S, Peterson EW (2009) Characterization of chloride transport in the unsaturated zone near salted road. Environ Geol 58:1041–1049. doi:10.1007/s00254-008-1584-6

    Article  Google Scholar 

  • Locat J, Gélinas P (1989) Infiltration of de-icing road salts in aquifers: the Trois–Rivières–Ouest case, Quebec, Canada. Can J Earth Sci 26:2186–2193. doi:10.1139/e89-185

    Article  Google Scholar 

  • Löfgren S (2001) The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. Water Air Soil Pollut 130:863–868. doi:10.1023/A:1013895215558

    Article  Google Scholar 

  • Marsalek J (2003) Road salts in urban stormwater: an emerging issue in stormwater management in cold climates. Water Sci Technol 48:61–70

    Google Scholar 

  • Mattingly RL, Herricks EE, Johnston DM (1993) Channelization and levee construction in Illinois: review and implications for management. Environ Manag 17:781–795. doi:10.1007/BF02393899

    Article  Google Scholar 

  • Meriano M, Eyles N, Howard KWF (2009) Hydrogeological impacts of road salt from Canada’s busiest highway on a Lake Ontario watershed (Frenchman’s Bay) and lagoon, City of Pickering. J Contam Hydrol 107:66–81. doi:10.1016/j.jconhyd.2009.04.002

    Article  Google Scholar 

  • Mikkelsen PS, Häfliger M, Ochs M, Jacobsen P, Tjell JC, Boller M (1997) Pollution of soil and groundwater from infiltration of highly contaminated stormwater: a case study. Water Sci Technol 36:325–330. doi:10.1016/S0273-1223(97)00578-7

    Google Scholar 

  • Molles M (1980) Effects of road salting on stream invertebrate communities. Eisenhower Consort Bull 10:1–9

    Google Scholar 

  • Novotny EV, Sander AR, Mohseni O, Stefan HG (2009) Chloride ion transport and mass balance in a metropolitan area using road salt. Water Resour Res. doi:10.1029/2009WR008141

    Google Scholar 

  • Pająk M, Krzaklewski W, Duda K, Gruba P (2015) Spatial and temporal variation in soil salinity as a result of chemical de-icing of road in Krakow, Poland. Fresenius Environ Bull 24:3363–3370

    Google Scholar 

  • Panno SV, Nuzzo VA, Cartwright K, Hensel BR, Krapac IG (1999) Impact of urban development on the chemical composition of ground water in a fen-wetland complex. Wetlands 19:236–245

    Article  Google Scholar 

  • Panno SV, Hackley KC, Hwang HH, Greenberg SE, Krapac IG, Landsberger S, O’Kelly DJ (2006) Characterization and identification of Na–Cl sources in ground water. Ground Water 44:176–187. doi:10.1111/j.1745-6584.2005.00127.x

    Article  Google Scholar 

  • Peterson EW, Benning C (2013) Factors influencing nitrate within a low-gradient agricultural stream. Environ Earth Sci 68:1233–1245. doi:10.1007/s12665-012-1821-x

    Article  Google Scholar 

  • Peterson EW, Sickbert TB (2006) Stream water bypass through a meander neck, laterally extending the hyporheic zone. Hydrogeol J 14:1443–1451. doi:10.1007/s10040-006-0050-3

    Article  Google Scholar 

  • Poor CJ, McDonnell JJ, Bolte J (2008) Testing the hydrological landscape unit classification system and other terrain analysis measures for predicting low-flow nitrate and chloride in watersheds. Environ Manag 42:877–893. doi:10.1007/s00267-008-9168-5

    Article  Google Scholar 

  • Ramakrishna D, Viraraghavan T (2005) Environmental impact of chemical deicers: a review. Water Air Soil Pollut 166:49–63. doi:10.1007/s11270-005-8265-9

    Article  Google Scholar 

  • Ruth O (2003) The effects of de-icing in Helsinki urban streams, Southern Finland. Water Sci Technol 48:33–43

    Google Scholar 

  • Salt Institute (2013) Snowfighter’s handbook: a practical guide for snow and ice control. Salt Institute, Portland

    Google Scholar 

  • Sanzo D, Hecnar SJ (2006) Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environ Pollut 140:247–256. doi:10.1016/j.envpol.2005.07.013

    Article  Google Scholar 

  • Schlesinger WH (2004) Better living through biochemistry. Ecology 85:2402–2407. doi:10.1890/03-0242

    Article  Google Scholar 

  • Scott WS (1976) The effect of road deicing salts on sodium concentration in an urban water-course. Environ Pollut (1970) 10:141–153. doi:10.1016/0013-9327(76)90103-8

    Article  Google Scholar 

  • Seilheimer T, Wei A, Chow-Fraser P, Eyles N (2007) Impact of urbanization on the water quality, fish habitat, and fish community of a Lake Ontario marsh, Frenchman’s Bay. Urban Ecosyst 10:299–319. doi:10.1007/s11252-007-0028-5

    Article  Google Scholar 

  • Shoemaker L, Lahlou M, Doll A, Cazenas P (2002) Storm water best management practices in an ultra-urban setting: selection and monitoring. Administration Federal Highway (ed) US Department of Transportation, Federal Highway Administration, Landover, MD

  • Soller DR, Price SD, Berg RC, Kempton JP (1998) A method for three-dimensional mapping. In: Soller DR (ed) Digital mapping techniques ‘98 workshop proceedings. United States geological Survey, Champaign, pp 79–84

    Google Scholar 

  • Thunqvist E (2003) Increased chloride concentration in a lake due to deicing salt application. Water Sci Technol 48:51–59

    Google Scholar 

  • Van der Hoven SJ, Fromm NJ, Peterson EW (2008) Quantifying nitrogen cycling beneath a meander of a low gradient, N-impacted, agricultural stream using tracers and numerical modelling. Hydrol Process 22:1206–1215. doi:10.1002/hyp.6691

    Article  Google Scholar 

  • Warren LA, Zimmerman AP (1994) The influence of temperature and NaCl on cadmium, copper and zinc partitioning among suspended particulate and dissolved phases in an urban river. Water Res 28:1921–1931. doi:10.1016/0043-1354(94)90167-8

    Article  Google Scholar 

  • Watson LR, Bayless ER, Buszka PM, Wilson JT. (2002) Effects of highway-deicer application on ground-water quality in a part of the calumet aquifer, northwestern Indiana. United States Geological Survey. Water-Resources Investigation Report 01-4260. United States Geological Survey, Indianapolis, Indiana

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Wade Peterson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lax, S.M., Peterson, E.W. & Van der Hoven, S.J. Stream chloride concentrations as a function of land use: a comparison of an agricultural watershed to an urban agricultural watershed. Environ Earth Sci 76, 708 (2017). https://doi.org/10.1007/s12665-017-7059-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-7059-x

Keywords

Navigation