Skip to main content
Log in

Heavy metal distribution and accumulation in the Spartina alterniflora from the Andong tidal flat, Hangzhou Bay, China

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In order to study the heavy metal accumulation and distribution in the roots, stems, and leaves of Spartina alterniflora, we collected S. alterniflora samples and the associated sediments along three transects at the Andong tidal flat, Hangzhou Bay. Co, Ni, Cd, Pb, Cu, and Zn were mainly accumulated in the aerial parts (stems and leaves) of the plants, and their distributions depended on their mobility and their roles during the metabolism processes of S. alterniflora. The concentrations of Cu, Zn, Cd, Hg, and Pb were significantly enhanced with the increasing of heavy metal concentrations in the sediments, while those of Co and Ni remained relatively constant. Bioaccumulation factors results showed that the serious heavy metal contamination in the sediments from the transect A may overwhelm the accumulation capability of the plants. In addition, the physicochemical properties of the sediments and the pore water therein also play a role in the heavy metal concentrations and accumulations in the plants, because they can influence the behaviors and bioavailabilities of heavy metals during nutrition and bioaccumulation processes of the plants. The sediments with vegetation did not show significantly decreased heavy metal concentration with respect to the unvegetated sediments, although the plants did absorb heavy metals from the sediments. Principal component analysis and correlation analyses indicated that Co–Ni, Cu–Cd–Hg behaved coherently during accumulation, which may be ascribed to their similar accumulation mechanisms. This work provided essential information on the heavy metal accumulation by plants in a tidal flat, which will be useful for the environmental control through phytoremediation at estuaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aksoy A, Duman F, Sezen G (2005) Heavy metal accumulation and distribution in narrow-leaved cattail (Typha angustifolia) and common reed (Phragmites australis). J Freshw Ecol 20(4):783–785. doi:10.1080/02705060.2005.9664806

    Article  Google Scholar 

  • Alloway BJ, Jackson AP, Morgan H (1990) The accumulation of cadmium by vegetables grown in soils contaminated from a variety of sources. Sci Total Environ 91:223–236. doi:10.1016/0048-9697(90)90300-J

    Article  Google Scholar 

  • Almeida CMR, Mucha AP, Vasconcelos MT (2004) Role of different salt marsh plants on metal retention in an urban estuary (Lima estuary, NW Portugal). Estuar Coast Shelf Sci 91(2):243–249. doi:10.1016/j.ecss.2010.10.037

    Article  Google Scholar 

  • Armid A, Shinjo R, Zaeni A, Sani A, Ruslan R (2014) The distribution of heavy metals including Pb, Cd and Cr in Kendari Bay surficial sediments. Mar Pollut Bull 84(1–2):373–378. doi:10.1016/j.marpolbul.2014.05.021

    Article  Google Scholar 

  • Baldantoni D, Alfani A, DiTommasi P, Bartoli G, De Santo AV (2004) Assessment of macro and micro element accumulation capability of two aquatic plants. Environ Pollut 130(2):149–156. doi:10.1016/j.envpol.2003.12.015

    Article  Google Scholar 

  • Bonanno G, Lo Giudice R (2010) Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecol Indic 10(3):639–645. doi:10.1016/j.ecolind.2009.11.002

    Article  Google Scholar 

  • Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy-metals in sediments with special reference to United-Kingdom estuaries—a review. Environ Pollut 76(2):89–131. doi:10.1016/0269-7491(92)90099-V

    Article  Google Scholar 

  • Burke DJ, Weis JS, Weis P (2000) Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis. Estuar Coast Shelf Sci 51(2):153–159. doi:10.1006/ecss.2000.0673

    Article  Google Scholar 

  • Bush DS (1995) Calcium regulation in plant-cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Bioil 46:95–122

    Article  Google Scholar 

  • Cacador I, Vale C, Catarino F (1996) Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between roots of the Tagus estuary salt marshes, Portugal. Estuar Coast Shelf Sci 42(3):393–403. doi:10.1006/ecss.1996.0026

    Article  Google Scholar 

  • Cacador I, Vale C, Catarino F (2000) Seasonal variation of Zn, Pb, Cu and Cd concentrations in the root-sediment system of Spartina maritima and Halimione portulacoides from Tagus estuary salt marshes. Mar Environ Res 49(3):279–290. doi:10.1016/S0141-1136(99)00077-X

    Article  Google Scholar 

  • Cacador I, Caetano M, Duarte B, Vale C (2009) Stock and losses of trace metals from salt marsh plants. Mar Environ Res 67(2):75–82. doi:10.1016/j.marenvres.2008.11.004

    Article  Google Scholar 

  • Chen J, Liu C, Zhang C, Walker HJ (1990) Geomorphological development and sedimentation in Qiantang Estuary and Hangzhou Bay. J Coast Res 6(3):559–572

    Google Scholar 

  • Dai Z, Liu JT, Xie HL, Shi WY (2014) Sedimentation in the Outer Hangzhou Bay, China: the influence of Changjiang sediment load. J Coast Res 30(6):1218–1225. doi:10.2112/JCOASTRES-D-12-00164.1

    Article  Google Scholar 

  • Davis HG, Taylor CM, Civille JC, Strong DR (2004) An Allee effect at the front of a plant invasion: Spartina in a Pacific estuary. J Ecol 92(2):321–327

    Article  Google Scholar 

  • DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84:236–246. doi:10.1016/j.aquatox.2007.02.022

    Article  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132(1):29–40. doi:10.1016/j.envpol.2004.03.030

    Article  Google Scholar 

  • Diagomanolin V, Farhang M, Ghazi-Khansari M, Jafarzadeh N (2004) Heavy metals (Ni, Cr, Cu) in the Karoon Waterway River, Iran. Toxicol Lett 151(1):63–68. doi:10.1016/j.toxlet.2004.02.018

    Article  Google Scholar 

  • Divan Junior AM, de Oliveira PL, Perry CT, Atz VL, Azzarini-Rostirola LN, Raya-Rodrigueze MT (2009) Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Candiota, South Brazil. Ecol Indic 9(6):1156–1162. doi:10.1016/j.ecolind.2009.01.004

    Article  Google Scholar 

  • Djingova R, Kovacheva P, Wagner G, Markert B (2003) Distribution of platinum group elements and other traffic related elements among different plants along some highways in Germany. Sci Total Environ 308(PII S0048-9697(02)00677-01-3):235–246. doi:10.1016/S0048-9697(02)00677-0

    Article  Google Scholar 

  • Doyle C, Pablo F, Lim R, Hyne RV (2003) Assessment of metal toxicity in sediment pore water from Lake Macquarie, Australia. Arch Environ Contam Toxicol 44:0343–0350. doi:10.1007/s00244-002-2003-8

    Article  Google Scholar 

  • D’Souza Varun M, Pratasb J, Paula MS (2013) Spatial distribution of heavy metals in soil and flora associated with the glass industry in north central India: implications for phytoremediation. Soil Sediment Contam 22(1):1–20. doi:10.1080/15320383.2012.697936

    Article  Google Scholar 

  • Duarte B, Caetano M, Almeida PR, Vale C, Cacador I (2010) Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal). Environ Pollut 158(5):1661–1668. doi:10.1016/j.envpol.2009.12.004

    Article  Google Scholar 

  • Ericksen JA, Gustin MS, Schorran DE, Johnson DW, Lindberg SE, Coleman JS (2003) Accumulation of atmospheric mercury in forest foliage. Atmos Environ 37(12):1613–1622. doi:10.1016/S1352-2310(03)00008-6

    Article  Google Scholar 

  • Fang XB, Subudhi PK, Venuto BC, Harrison SA (2004) Mode of pollination, pollen germination, and seed set in smooth cordgrass (Spartina alterniflora, Poaceae). Int J Plant Sci 165(3):395–401. doi:10.1086/382810

    Article  Google Scholar 

  • Fay L, Gustin M (2007) Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment. Water Air Soil Pollut 181(1–4):373–384. doi:10.1007/s11270-006-9308-6

    Article  Google Scholar 

  • Fernandez-Cadena JC, Andrade S, Silva-Coello CL, De la lglesia R (2014) Heavy metal concentration in mangrove surface sediments from the north-west coast of South America. Mar Pollut Bull 82(1–2):221–226. doi:10.1016/j.marpolbul.2014.03.016

    Article  Google Scholar 

  • Ferrer L, Andrade S, Asteasuain R, Marcovecchio J (2006) Acute toxicities of four metals on the early life stages of the crab Chasmagnathus granulata from Bahia Blanca estuary, Argentina. Ecotoxicol Environ Saf 65(2):209–217. doi:10.1016/j.ecoenv.2005.06.010

    Article  Google Scholar 

  • Gallagher JL, Plumley FG (1979) Underground biomass profiles and productivity in Atlantic coastal marshes. Am J Bot 66(2):156–161

    Article  Google Scholar 

  • Gallagher JL, Pfeiffer WJ, Pomeroy LR (1976) Leaching and microbial utilization of dissolved organic-carbon from leaves of Spartina alterniflora. Estuar Coast Shelf Sci 4(4):467–471. doi:10.1016/0302-3524(76)90021-9

    Article  Google Scholar 

  • Gallagher JL, Reimold RJ, Linthurst RA, Pfeiffer WJ (1980) Aerial production, mortality, and mineral accumulation-export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt-marsh. Ecology 61(2):303–312

    Article  Google Scholar 

  • Ghandour IM, Basaham S, Al-Washmi A, Masuda H (2014) Natural and anthropogenic controls on sediment composition of an arid coastal environment: SharmObhur, Red Sea, Saudi Arabia. Environ Monit Assess 186(3):1465–1484. doi:10.1007/s10661-013-3467-x

    Article  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86(18):6838–6842

    Article  Google Scholar 

  • Guo YX, Fan DD, Li CX, Yuan LH (2004) Grain-size characteristics and their applications to the intertidal subfacies division: a case study from Andong tidal flat in the Hangzhou Bay. Mar Geol Lett 20(5):9–14

    Google Scholar 

  • Hajar EWI, Sulaiman AZB, Sakinah AMM (2014) Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana plant. In: The international conference on sustainable future for human security sustain, vol 20, pp 386–393

  • He B, Li MW, Qiu GY (2014) Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China. Environ Geochem Health 36(3):467–476. doi:10.1007/s10653-013-9574-3

    Article  Google Scholar 

  • Hempel M, Botte SE, Negrin VL, Chiarello MN, Marcovecchio JE (2008) The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahia Blanca estuary salt marshes. J Soils Sediment 8(5):289–297. doi:10.1007/s11368-008-0027-z

    Article  Google Scholar 

  • Huang HM, Zhang LQ, Guan YJ, Wang DH (2008) A cellular automata model for population expansion of Spartina alterniflora at Jiuduansha Shoals, Shanghai, China. Estuar Coast Shelf S 77(1):47–55. doi:10.1016/j.ecss.2007.09.003

    Article  Google Scholar 

  • Idaszkin YL, Bouza PJ, Marinho CH, Gil MN (2014) Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh. Mar Pollut Bull 89(1–2):444–450. doi:10.1016/j.marpolbul.2014.10.001

    Article  Google Scholar 

  • Jiang LF, Luo YQ, Chen JK, Li B (2009) Ecophysiological characteristics of invasive Spartina alterniflora and native species in salt marshes of Yangtze River estuary, China. Estuar Coast Shelf Sci 81(1):74–82. doi:10.1016/j.ecss.2008.09.018

    Article  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin

    Book  Google Scholar 

  • Katsev S, Tsandev I, L’heureux I, Rancourt DG (2006) Factors controlling long-term phosphorus efflux from lake sediments: exploratory reactive-transport modeling. Chem Geol 234:127–147. doi:10.1016/j.chemgeo.2006.05.001

    Article  Google Scholar 

  • Kumar JIN, Soni H, Kumar RN (2006) Biomonitoring of selected freshwater macrophytes to assess lake trace element contamination: a case study of NalSarovar Bird Sanctuary, Gujarat, India. J Limnol 65(1):9–16

    Article  Google Scholar 

  • Larsen VJ (1983) The significance of atmospheric deposition of heavy-metals in 4 Danish Lakes. Sci Total Environ 30(SEP):111–127. doi:10.1016/0048-9697(83)90006-2

    Article  Google Scholar 

  • Lee SA, Yoon EK, Heo JO, Lee MH, Hwang I, Cheong H, Lee WS, Hwang YS, Lim J (2012) Analysis of Arabidopsis glucose insensitive growth Mutants Reveals the Involvement of the plastidial copper transporter PAA1 in glucose-induced intracellular signaling. Plant Physiol 159(3):1001–1012

    Article  Google Scholar 

  • Lehtonen J (1989) Effects of acidification on the metal levels in aquatic macrophytes in Espoo, S Finland. Ann Bot Fenn 26(1):39–50

    Google Scholar 

  • Li Y (1993) 201Pb as a tracer for the tidal flat sedimentation in the southern Hangzhou Bay. Donghai Mar Sci 11(1):34–43

    Google Scholar 

  • Li Y, Xie QC (1993) Dynamic development of the Andong tidal flat in Hangzhou Bay, China. Donghai Mar Sci 11(02):25–33

    Google Scholar 

  • Lindberg SE, Robert Harriss, Turner RR, Shriner DS, Huff DD (1979) Mechanisms and rates of atmospheric deposition of trace-elements and sulfate to forest canopy. Abstr Pap Am Chem Soc. doi:10.2172/5997611

    Google Scholar 

  • Lisamarie W, Judith SW, Peddrick W (2001) Lead uptake, distribution, and effects in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Mar Pollut Bull 42(10):811–816. doi:10.1016/S0025-326X(00)00224-1

    Article  Google Scholar 

  • Liu SF, Liu YG, Yang G, Qiao SQ, Li CX, Zhu ZW, Shi XF (2012) Distribution of major and trace elements in surface sediments of Hangzhou Bay in China. Acta Oceanol Sin 31(4):89–100. doi:10.1007/s13131-012-0223-y

    Article  Google Scholar 

  • Maanan M, Zourarah B, Sahabib M, Maananc M, Le Royd P, Mehdib K, Salhib F (2015) Environmental risk assessment of the Moroccan Atlantic continental shelf: the role of the industrial and urban area. Sci Total Environ 511:407–415. doi:10.1016/j.scitotenv.2014.12.098

    Article  Google Scholar 

  • Madejon P, Maranon T, Murillo JM, Robinson B (2004) White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environ Pollut 132(1):145–155. doi:10.1016/j.envpol.2004.03.015

    Article  Google Scholar 

  • Marcovecchio JE (2000) Land-based sources and activities affecting the marine environment at the Upper Southwestern Atlantic Ocean: an overview. UNEP Regional Seas Reports and Studies No. 170:67

  • Marcovecchio J, Ferrer L (2005) Distribution and geochemical partitioning of heavy metals in sediments of the Bahia Blanca Estuary, Argentina. J Coastal Res 21(4):826–834. doi:10.2112/014-NIS.1

    Article  Google Scholar 

  • Markert B, Friese K (1999) Seventh international congress of ecology: symposium on “trace metals in the environment”. UWSF-Z Umweltchem Ökotox 11(3):163–166

    Article  Google Scholar 

  • Mazej Z, Germ M (2009) Trace element accumulation and distribution in four aquatic macrophytes. Chemosphere 74(5):642–647. doi:10.1016/j.chemosphere.2008.10.019

    Article  Google Scholar 

  • McGann M (2008) High-resolution foraminiferal, isotopic, and trace element records from Holocene estuarine deposits of San Francisco Bay, California. J Coastal Res 24(5):1092–1109. doi:10.2112/08A-0003.1

    Article  Google Scholar 

  • Mendelssohn IA, Kuhn NL (2003) Sediment subsidy: effects on soil-plant responses in a rapidly submerging coastal salt marsh. Ecol Eng 21(2–3):115–128. doi:10.1016/j.ecoleng.2003.09.006

    Article  Google Scholar 

  • Milliman JD, Shen HT, Yang ZS, Robert HM (1985) Transport and deposition of river sediment in the Changjiang estuary and Adjacent continental-shelf. Cont Shelf Res 4(1–2):37–45. doi:10.1016/0278-4343(85)90020-2

    Article  Google Scholar 

  • Mishra VK, Upadhyaya AR, Upadhyaya AR, Pandey SK, Tripathi BD (2008) Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes. Bioresour Technol 99(5):930–936. doi:10.1016/j.biortech.2007.03.010

    Article  Google Scholar 

  • Padinha C, Santos R, Brown MT (2000) Evaluating environmental contamination in Ria Formosa (Portugal) using stress indexes of Spartina maritima. Mar Environ Resour 49:67–78. doi:10.1016/S0141-1136(99)00049-5

    Article  Google Scholar 

  • Pan K, Wang WX (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421:3–16. doi:10.1016/j.scitotenv.2011.03.013

    Article  Google Scholar 

  • Pang HJ, Chen XG, Lou ZH, Jin AM, Yan KK, Jiang Y, Yang XH (2015) Contamination, distribution, and sources of heavy metals in the surface sediments of Andong tidal flat, Hangzhou Bay, China. Cont Shelf Res 100:72–84. doi:10.1016/j.csr.2015.10.002

    Article  Google Scholar 

  • Phillips DP, Human LRD, Adams JB (2015) Wetland plants as indicators of heavy metal contamination. Mar Pollut Bull 92:227–232. doi:10.1016/j.marpolbul.2014.12.038

    Article  Google Scholar 

  • Pietrini F, Iannelli MA, Pasqualini S, Massacci A (2003) Interaction of cadmium with glutathione and photosynthesis in developing leaves and chloroplasts of Phragmites australis (Cav.) Trin. ex Steudel. Plant Physiol 133(2):829–837

    Article  Google Scholar 

  • Quan WM, Han JD, Shen XY, Ping PL, Li CJ, Shi LY, Chen YQ (2007) Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Mar Environ Res 64(1):21–37. doi:10.1016/j.marenvres.2006.12.005

    Article  Google Scholar 

  • Reboreda R, Cacador I (2007a) (a)) Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut 146(1):147–154. doi:10.1016/j.envpol.2006.05.035

    Article  Google Scholar 

  • Reboreda R, Cacador I (2007b) (b)) Copper, zinc and lead speciation in salt marsh sediments colonised by Halimione portulacoides and Spartina maritima. Chemosphere 69(10):1655–1661. doi:10.1016/j.chemosphere.2007.05.034

    Article  Google Scholar 

  • Sainger PA, Dhankhar R, Sainger M, Kaushik A, Singh RP (2011) Assessment of heavy metal tolerance in native plant species from soils contaminated with electroplating effluent. Ecotoxicol Environ Saf 74(8):2284–2291. doi:10.1016/j.ecoenv.2011.07.028

    Article  Google Scholar 

  • Santos-Echeandia J, Vale C, Caetano M (2010) Effect of tidal flooding on metal distribution in pore waters of marsh sediments and its transport to water column (Tagus estuary, Portugal). Mar Environ Res 70:358–367. doi:10.1016/j.marenvres.2010.07.003

    Article  Google Scholar 

  • Sawidis T, Chettri MK, Papaioannou A, Zachariadis G, Stratis J (2001) A study of metal distribution from lignite fuels using trees as biological monitors. Ecotoxicol Environ Saf 48(1):27–35. doi:10.1006/eesa.2000.2001

    Article  Google Scholar 

  • Schierup HH, Larsen VJ (1981) Macrophyte cycling of zinc, copper, lead and cadmium in the littoral-zone of a polluted and a non-polluted lake. I. Availability, uptake and translocation of heavy-metals in Phragmites-Australis (CAV) trin. Aquat Bot 11(3):197–210. doi:10.1016/0304-3770(81)90061-9

    Article  Google Scholar 

  • Scholze RJ, Smith ED, Bandy JT, Wu YC, Basilico JV (1988) Biotechnology for degradation of toxic chemicals in hazardous wastes. Atmos Environ 23(4):899–900

    Google Scholar 

  • Shaw BP (1986) Mercury absorption by some plants and the biology significance in some areas of India. Arch Environ Contam Toxicol 15:439–446

    Article  Google Scholar 

  • Su JL, Wang KS (1989) Changjiang River plume and suspended sediment transport in Hangzhou Bay. Cont Shelf Res 9(1):93–111. doi:10.1016/0278-4343(89)90085-X

    Article  Google Scholar 

  • Valery L, Bouchard V, Lefeuvre JC (2004) Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh. Wetlands 24(2):268–276

    Article  Google Scholar 

  • Vymazal J, Svehla J, Kröpfelovád L, Chrastnýc V (2007) Trace metals in Phragmites australis and Phalaris arundinacea growing in constructed and natural wetlands. Sci Total Environ 380(1-3SI):154–162. doi:10.1016/j.scitotenv.2007.01.057

    Article  Google Scholar 

  • Weis JS, Weis P (2002) Contamination of saltmarsh sediments and biota by CCA treated wood walkways. Mar Pollut Bull 44(6):504–510. doi:10.1016/S0025-326X(01)00294-6

    Article  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30(5):685–700. doi:10.1016/j.envint.2003.11.002

    Article  Google Scholar 

  • Weis JS, Windham L, Weis P (2003) Patterns of metal accumulation in leaves of the tidal marsh plants Spartina alterniflora Loisel and Phragmites australis Cav. Trin Ex Steud over the growing season. Wetlands 23(2):459–465

    Article  Google Scholar 

  • Weis JS, Glover T, Weis P (2004) Interactions of metals affect their distribution in tissues of Phragmites australis. Environ Pollut 131(3):409–415. doi:10.1016/j.envpol.2004.03.006

    Article  Google Scholar 

  • Williams TP, Bubb JM, Lester JN (1994) Metal accumulation within salt-marsh environments—a review. Mar Pollut Bull 28(5):277–290. doi:10.1016/0025-326X(94)90152-X

    Article  Google Scholar 

  • Windham L, Lathrop RG (1999) Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Estuaries 22(4):927–935

    Article  Google Scholar 

  • Windham L, Weis JS, Weis P (2003) Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuar Coast Shelf Sci 56(1):63–72. doi:10.1016/S0272-7714(02)00121-X

    Article  Google Scholar 

  • Wong SC, Li XD, Zhang G, Qi SH, Min YS (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China. Environ Pollut 119(1):33–44. doi:10.1016/S0269-7491(01)00325-6

    Article  Google Scholar 

  • Wu QH, Tam NFY, Leung JYS, Zhou XZ, Fu J, Yao B, Huang XX, Xia LH (2014) Ecological risk and pollution history of heavy metals in Nansha mangrove, South China. Ecotoxicol Environ Saf 104:143–151. doi:10.1016/j.ecoenv.2014.02.017

    Article  Google Scholar 

  • Xie D, Gao S, Pan CH (2010) Process-based modeling of morphodynamics of a tidal inlet system. Acta Oceanol Sin 29(6):51–61. doi:10.1007/s13131-010-0076-1

    Article  Google Scholar 

  • Zhang HY, Wang ZD (2013) Source identification and transfer route of heavy metal pollution in environment-plant-human system (a REVIEW). Agric Eng 3(3):55–58. doi:10.3969/j.issn.2095-1795.2013.03.022

    Google Scholar 

  • Zhang W, Yu L, Hutchinson SM, Xu S, Chen Z, Gao X (2001) China’s Yangtze Estuary: I. Geomorphic influence on heavy metal accumulation in intertidal sediments. Geomorphology 41(2–3):195–205. doi:10.1016/S0169-555X(01)00116-7

    Article  Google Scholar 

  • Zhou HX, Liu JE, Zhou J, Qin P (2008) Effect of an alien species Spartina alterniflora Loisel on biogeochemical processes of intertidal ecosystem in the Jiangsu coastal region, China. Pedosphere 18(1):77–85. doi:10.1016/S1002-0160(07)60105-2

    Article  Google Scholar 

  • Zuo P, Liu CA, Zhao SH, Wang CH, Liang YB (2009) Distribution of Spartina plantations along the China’s coast. Acta Oceanol Sin 31:101–111

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the “Research of heavy metal geochemical characteristics in the sediments of Hangzhou Bay,” Self-Program of Zhejiang University.

Author information

Authors and Affiliations

Authors

Contributions

Z-HL, X-GC, and A-MJ conceived the ideas; X-GC, H-JP, K-KY, X-HY contributed to the sampling work; H-JP, S-SL, YJ, and FL analyzed the samples and investigated the data; H-JP, X-GC, and Z-HL wrote the manuscript, FL helped to revise the language of the manuscript, X-HY helped to draw the maps and diagrams; Z-HL is responsible for the whole article.

Corresponding author

Correspondence to Zhang-Hua Lou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “Environment and Health in China II”, guest edited by Tian-Xiang Yue, Cui Chen, Bing Xu and Olaf Kolditz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, HJ., Lyu, SS., Chen, XG. et al. Heavy metal distribution and accumulation in the Spartina alterniflora from the Andong tidal flat, Hangzhou Bay, China. Environ Earth Sci 76, 627 (2017). https://doi.org/10.1007/s12665-017-6948-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6948-3

Keywords

Navigation