Skip to main content
Log in

Hydrogeochemical evaluation of Umut geothermal field (SW Turkey)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Tekkehamam geothermal field is located in the South of Menderes Graben (Aegean region) and is one of the most important geothermal sites of Western Anatolia. Umut geothermal field is a part of the Tekkehamam field. This study was conducted in order to determine the origin and hydrogeochemical properties of the geothermal waters. For this purpose, sampling was done in order to check the chemistry of the water, and 18O, 2H isotope analyses done at four wells, nine natural springs and three cold water sources. According to the results of the chemical analysis, the geothermal waters were determined to be of Na + K-SO4 type. Additionally, 14C and 3H analyses were done in selected well and spring waters for the purpose of age determination of groundwater; most of the waters were determined to be submodern. Geothermometer calculations show that the reservoir temperature for the Umut geothermal field ranges between 148 and 180 °C. Stable isotope results indicate that Umut geothermal waters are meteoric in origin. Mixing between shallow and deep waters is the dominant subsurface process that determines the physical and chemical character of the waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Agarwal M, Gupta SK, Deshpande RD, Yadava MG (2006) Helium, radon and radiocarbon studies on a regional aquifer system of the North Gujarat-Cambay region, India. Chem Geol 228:209–232

    Article  Google Scholar 

  • Akyol N, Zhu L, Mitchell BJ, Sözbilir H, Kekoval K (2006) Crustal structure and local seismicity in western Anatolia. Geophys J Int 166(3):1259–1269

    Article  Google Scholar 

  • Alçiçek H, Bülbül A, Alçiçek MC (2016) Hydrogeochemistry of the thermal waters from the Yenice Geothermal Field (Denizli Basin, southwestern Turkey). J Volcanol Geotherm Res 309:118–138

    Article  Google Scholar 

  • Arnorsson S (1985) The use of mixing models and chemical geothermometers for estimating underground temperatures in geothermal systems. J Volcanol Geotherm Res 23:299–335

    Article  Google Scholar 

  • Arnorsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in geothermal investigations. Geochim Cosmochim Acta 47(3):567–577

    Article  Google Scholar 

  • Arnorsson S, Andrésdóttir A, Gunnarsson I, Stefánsson A (1998) New Calibration for The Quartz and Na/K Geothermometers—Valid in The Range 0–350°C. Geoscience Society of Iceland Annual Meeting, April 1994 (In Icelandic), pp 42–43

  • Bertani R (2016) Geothermal power generation in the world 2010–2014 update report. Geothermics 60:31–43

    Article  Google Scholar 

  • Bozkurt E (2000) Timing of extension on the Büyük Menderes Graben, Western Turkey and its tectonic implications. In: Bozkurt E, Winchester JA, Piper JDA (eds) Tectonics and magmatism in Turkey and the surrounding area. Geological Society, London, Special Publications, vol 173, pp 385–403

  • Bozkurt E (2001a) Late Alpine evolution of the central Menderes Massif, western Anatolia, Turkey. Int J Earth Sci 89:728–744

    Article  Google Scholar 

  • Bozkurt E (2001b) Neotectonics of Turkey—a synthesis. Geodin Acta 14(1–3):3–30

    Article  Google Scholar 

  • Bozkurt E (2003) Origin of NE-trending basins in western Turkey. Geodin Acta 16:61–81

    Article  Google Scholar 

  • Bozkurt E, Sözbilir H (2004) Geology of the Gediz Graben: new field evidence and tectonic significance. Geol Mag 141:63–79

    Article  Google Scholar 

  • Bülbül A (2015) Mixing of geothermal and non-geothermal fluids in shallow aquifers in the Germencik-Nazilli area, Büyük Menderes Basin (SW Turkey). Geodin Acta 27(1):67–81

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis Publisher/CRC Press, Boca Raton

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  Google Scholar 

  • Demirörer M (1969) Denizli-Sarayköy Gradyent Etüdleri. MTA Rapor No: 4141, Ankara

  • Dewey JF, Şengör AMC (1979) Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geol Soc Am Bull 90(1):84–92

    Article  Google Scholar 

  • Doglioni C, Agostini S, Crespi M, Innocenti F, Manetti P, Riguzzi F, Savaşçı Y (2002) On the extension in western Anatolia and the Aegean sea. J Virtual Explor 7:117–131

    Google Scholar 

  • Fouillac C, Michard G (1981) Sodium/lithium ratio in water applied to geothermometry of geothermal reservoirs. Geothermics 10(1):55–70

    Article  Google Scholar 

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  Google Scholar 

  • Fournier RO (1979) A revised equation for the Na/K geothermometer. Geothermal Resour Council Trans 3:221–224

    Google Scholar 

  • Fournier RO, Potter II RW (1982) A revised and expanded silica (quartz) geothermometer. Geothermal Resource Council Bulletin 11:3–12

    Google Scholar 

  • Fournier RO, Truesdell AH (1973) An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochim Cosmochim Acta 37(5):1255–1275

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na–K–Ca–Mg geoindicators. Geochim Cosmochim Acta 52(12):2749–2765

    Article  Google Scholar 

  • Görür N, Şengör AMC, Sakınç M, Tüysüz O, Akkök R, Yiğitbaş E, Oktay FY, Barka A, Sarıca N, Ecevitoğlu B, Demirbağ E, Ersoy Ş, Algan O, Güneysu C, Aykol A (1995) Rift formation in the Gökova region, southwest Anatolia: implications for the opening of the Aegean Sea. Geol Mag 132(06):637–650

    Article  Google Scholar 

  • IAEA (1981) Stable isotope hydrology. Deuterium and oxygen-18 in water cycle (Editors: Gat and Gonfiantini), International Atomic Energy Agency. Technical Report Series No. 210, Vienna, 339

  • Jackson JA, Mckenzie DP (1988) The relationship between plate motions and seismic moment tensors and rates of active deformation in the Mediterranean and Middle East. Geophys J Int 93(1):45–73

    Article  Google Scholar 

  • Karakuş H, Şimşek Ş (2013) Tracing deep thermal water circulation systems in the E-W trending Büyük Menderes Graben, western Turkey. J Volcanol Geotherm Res 252:38–52

    Article  Google Scholar 

  • Karamanderesi İH (2002) Kadir Başoğlan Gerenlik Kaplıcaları Denizli, Sarayköy, Tırkaz Köyü, Kokarhamam Mevkii, 167 ada, 3 parsel, 167 ada, 4 parsel, üzerindeki tesisler sıcak su (KB-1) kuyusu ve 158 Ada Kokarhamam kaynakları teknik raporu, unpublished

  • Kharaka YK, Mariner RH (1989) Chemical geothermometers and their application to formation waters from sedimentary basins. Thermal history of sedimentary basins. Springer, New York, pp 99–117

    Chapter  Google Scholar 

  • Kharaka YK, Lico MS, Law LM (1982) Chemical geothermometers applied to formation waters, gulf of Mexico and California basins: abstract. Am Assoc Pet Geol Bull 66(5):588

    Google Scholar 

  • Koçyiğit A, Yusufoğlu H, Bozkurt E (1999) Evidence from the Gediz graben for episodic two-stage extension in western Turkey. J Geol Soc 156:605–616

    Article  Google Scholar 

  • Le Pichon X, Angelier J (1979) The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60:1–42

    Article  Google Scholar 

  • Le Pichon X, Angelier J (1981) The Aegean Sea. Philos Trans R Soc London A300:357–372

    Article  Google Scholar 

  • Le Pichon X, Chamot-Rooke C, Lallemant S, Noomen R, Yeis G (1995) Geodetic determination of the kinematics of Central Greece with respect to Europe: implications for Eastern Mediterranean tectonics. J Geophys Res 100:12675–12690

    Article  Google Scholar 

  • Lund JW, Boyd TL (2016) Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60:66–93

    Article  Google Scholar 

  • McKenzie DP (1978) Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophys JR Astron Soc 55(1):217–254

    Article  Google Scholar 

  • Mertoğlu O, Şimşek Ş, Dagıstan D, Bakır N, Doğdu N (2010) Geothermal country update report of Turkey (2005–2010). In: Proceedings of the 2010 world geothermal congress, Bali, Indonesia, pp 1–9

  • Mertoğlu O, Şimşek Ş, Basarır N (2015) Geothermal country update report of Turkey (2010–2015). In: Proceedings world geothermal congress 2015, Melbourne, Australia, pp 1–9

  • Nieva D, Nieva R (1987) Developments in geothermal energy in Mexico, part 12. A cationic geothermometer for prospecting of geothermal resources. Heat Recovery Syst CHP 7 (3): 243–258

  • Okay AI, Satır M (2000) Coeval plutonism and metamorphism in a latest Oligocene metamorphic core complex in northwest Turkey. Geol Mag 137(5):495–516

    Article  Google Scholar 

  • Öngür T (2009) Denizli Sarayköy Jeotermal Alanı Koruma Alanları Etüt Raporu. unpublished

  • Oral MB, Reilinger RE, Toksoz M, King RW, Barka AA, Kinik I, Lenk O (1995) Global positioning system offers evidence of plate motions in eastern Mediterranean. EOS Trans 76(9):9–11

    Google Scholar 

  • Parlaktuna M, Avşar Ö (2011) Denizli-Sarayköy Umut Jeotermal Sahası Değerlendirme Raporu. 36s unpublished

  • Şengör AMC (1979) The North Anatolian Transform Fault: its age, offset and tectonic significance. J Geol Soc 136(3):269–282

    Article  Google Scholar 

  • Şengör AMC (1982) Ege’nin neotektonik evrimini yöneten etkenler. Türkiye Jeoloji Kurultayı, Batı Anadolu’nun Geç Tektoniği ve Volkanizması Paneli, Ankara, pp 59–71

  • Şengör AMC (1987) Cross—faults and differential stretching of hanging walls in regions of low—angle normal faulting: examples from western Turkey. In: Coward MP, Dewey JF, Hancock P (eds) Continental extensional tectonics, vol 28. Geological Society London Special Publications, pp 575–589

  • Şengör AMC, Görür N, Şaroğlu E (1985) Strike–slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (eds) Strike slip faulting and basin formation. Society of Economic Paleontologists and Mineralogists, vol 37. Special Publications, pp 227–264

  • Seyitoğlu G, Scott BC (1992) The age of the Büyük Menderes Graben (west Turkey) and its tectonic implications. Geol Mag 129(02):239–242

    Article  Google Scholar 

  • Seyitoğlu G, Scott BC, Rundle CC (1992) Timing of Cenozoic extensional tectonics in west Turkey. J Geol Soc 149(4):533–538

    Article  Google Scholar 

  • Şimşek Z (1978) Tekkehamam Jeotermal Alanı Gradyent Sondajları Değerlendirmesi. MTA Rep. No: 6236, Ankara, unpublished

  • Şimşek Ş (1984) Denizli, Kızıldere-Tekkehamam-Tosunlar-Buldan-Yenice alanının Jeolojisi ve Jeotermal Enerji Olanakları. MTA report No: 7846, Ankara

  • Şimşek Ş (1985) Geothermal model of Denizli-Sarayköy- Buldan area. Geothermics 14(2):393–417

    Google Scholar 

  • Şimşek Ş (2003) Hydrogeological and isotopic survey of geothermal fields in the Buyuk Menderes graben, Turkey. Geothermics 32(4):669–678

    Google Scholar 

  • Sözbilir H, Emre T (1996) Menderes Masifi’nin neotektonik evriminde oluşan supradetachment havzalar ve rift havzaları. 49. Türkiye Jeoloji Kurultayı Bildiri Özleri, Ankara, pp 30–31

  • Süer S (2010) Geochemical monitoring of the seismic activities and noble gas characterization of the geothermal fields along the eastern segment of the Büyük Menderes Graben. Middle East Technical University, Thesis

    Google Scholar 

  • Tonani F (1980) Some remarks on the application of geochemical techniques in geothermal exploration. In: Proceedings second symposium advance European geothermal resources, Strasbourg, pp 428–443

  • Truesdell AH (1976) Summary of section III geochemical techniques in exploration. In: Proceedings of second united nations symposium on the development and use of geothermal resources, San Francisco, vol 1, U. S. Government Printing Office, Washington DC, pp 53–89

Download references

Acknowledgements

Kadir Başoğlan is acknowledged for permitting these investigations. This study was supported by the Muğla Sıtkı Koçman University funds BAP16/151 and BAP16/111. Constructive criticism from Semih Gürsu, Şebnem Arslan, Ulaş Avşar and Öncü Başoğlan Avşar has been much appreciated. We thank Selin Süer for performing the stable isotope analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Avşar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 10245 kb)

Supplementary material 2 (TIFF 10223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avşar, Ö., Altuntaş, G. Hydrogeochemical evaluation of Umut geothermal field (SW Turkey). Environ Earth Sci 76, 582 (2017). https://doi.org/10.1007/s12665-017-6929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6929-6

Keywords

Navigation