Skip to main content

Advertisement

Log in

Assessing the impacts of climate and land use change on streamflow, water quality and suspended sediment in the Kor River Basin, Southwest of Iran

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This research addressed the separate and combined impacts of climate and land use change on streamflow, suspended sediment and water quality in the Kor River Basin, Southwest of Iran, using (BASINS–WinHSPF) model. The model was calibrated and validated for hydrology, sediment and water quality for the period 2003–2012. The model was run under two climate changes, two land use changes and four combined change scenarios for near-future period (2020–2049). The results revealed that projected climate change impacts include an increase in streamflow (maximum increases of 52% under RCP 2.6 in December and 170% under RCP 8.5). Projected sediment concentrations under climate change scenarios showed a monthly average decrease of 10%. For land use change scenarios, agricultural development scenario indicated an opposite direction of changes in orthophosphate (increases in all months with an average increase of 6% under agricultural development scenario), leading to the conclusion that land use change is the dominant factor in nutrient concentration changes. Combined impacts results indicated that streamflows in late fall and winter months increased while in summer and early fall decreased. Suspended sediment and orthophosphate concentrations were decreased in all months except for increases in suspended sediment concentrations in September and October and orthophosphate concentrations in late winter and early spring due to the impact of land use change scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45:1–16. doi:10.1029/2008WR007615

    Article  Google Scholar 

  • Albek M, Albek E (2003) Predicting the effects of climate change on the sediment yield of watersheds. In: Diffuse pollution conference dublin 2003 3G: Agriculture, pp 137–142

  • Astaraie-Imani M, Kapelan Z, Fu G, Butler D (2012) Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK. J Environ Manag 112:1–9. doi:10.1016/j.jenvman.2012.06.039

    Article  Google Scholar 

  • Bicknell BR, Imhoff JC, Kittle Jr JL, Jobes TH, Donigian Jr AS (2001) Hydrological simulation program—FORTRAN (HSPF) Version 12, User’s Manual, 2001

  • Cox BA, Whitehead PG (2009) Impacts of climate change scenarios on dissolved oxygen in the River Thames, UK. Hydrol Res 40:138. doi:10.2166/nh.2009.096

    Article  Google Scholar 

  • Crossman J, Futter MN, Oni SK, Whitehead PG, Jin L, Butterfield D, Baulch HM, Dillon PJ (2013) Impacts of climate change on hydrology and water quality: future proofing management strategies in the Lake Simcoe watershed, Canada. J Great Lakes Res 39:19–32. doi:10.1016/j.jglr.2012.11.003

    Article  Google Scholar 

  • Dixon B, Earls J (2012) Effects of urbanization on streamflow using SWAT with real and simulated meteorological data. Appl Geogr 35:174–190. doi:10.1016/j.apgeog.2012.06.010

    Article  Google Scholar 

  • Duda PB, Hummel PR, Donigian ASJ, Imhoff JC (2012) Basins/Hspf: model use, calibration, and validation. Trans Asabe 55:1523–1547. doi:10.13031/2013.42261

    Article  Google Scholar 

  • El-Khoury A, Seidou O, Lapen DRL, Que Z, Mohammadian M, Sunohara M, Bahram D (2015) Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. J Environ Manag 151:76–86. doi:10.1016/j.jenvman.2014.12.012

    Article  Google Scholar 

  • Etemadi H, Samadi SZ, Sharifikia M (2012) Stastistical downscaling of climate variables in Shadegan Wetland, Iran. Sci Rep 1:1–9. doi:10.4172/scientificrep

    Google Scholar 

  • Fakhraei H (2009) Determination of self assimilating capacity of Kor and Sivand Rivers and total maximum daily load allocation (TMDL) of their pollution sources. Shiraz University, Shiraz

    Google Scholar 

  • Fan M, Shibata H (2015) Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecol Indic 50:79–89. doi:10.1016/j.ecolind.2014.11.003

    Article  Google Scholar 

  • Fernandes MR, Segurado P, Jauch E, Ferreira MT (2016) Riparian responses to extreme climate and land-use change scenarios. Sci Total Environ 569–570:145–158. doi:10.1016/j.scitotenv.2016.06.099

    Article  Google Scholar 

  • Ficklin DL, Stewart IT, Maurer EP (2013) Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resour Res 49:2765–2782. doi:10.1002/wrcr.20248

    Article  Google Scholar 

  • Hadjikakou M, Whitehead PG, Jin L, Futter M, Hadjinicolaou P, Shahgedanova M (2011) Modelling nitrogen in the Yeilirmak River catchment in Northern Turkey: impacts of future climate and environmental change and implications for nutrient management. Sci Total Environ 409:2404–2418

    Article  Google Scholar 

  • Hamon RW (1961) Estimating potential evapotranspiration. J Hydraul Div 87(HY3):107–120

    Google Scholar 

  • Jin L, Whitehead PG, Futter MN, Lu Z (2012) Modelling the impacts of climate change on flow and nitrate in the River Thames: assessing potential adaptation strategies. Hydrol Res 43:902–916. doi:10.2166/nh.2011.080

    Article  Google Scholar 

  • Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361–377. doi:10.1002/(SICI)1097-0088(199604)16:4<361:AID-JOC53>3.0.CO;2-F

    Article  Google Scholar 

  • Kim SM, Benham BL, Brannan KM, Zeckoski RW, Doherty J (2007) Comparison of hydrologic calibration of HSPF using automatic and manual methods. Water Resour Res. doi:10.1029/2006WR004883

    Google Scholar 

  • Kim J, Choi J, Choi C, Park S (2013) Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Sci Total Environ 452–453:181–195. doi:10.1016/j.scitotenv.2013.02.005

    Article  Google Scholar 

  • Li Z, Huang G, Wang X, Han J, Fan Y (2016) Impacts of future climate change on river discharge based on hydrological inference: a case study of the Grand River Watershed in Ontario, Canada. Sci Total Environ 548–549:198–210. doi:10.1016/j.scitotenv.2016.01.002

    Article  Google Scholar 

  • Mehdi B, Ludwig R, Lehner B (2015) Evaluating the impacts of climate change and crop land use change on streamflow, nitrates and phosphorus: a modeling study in Bavaria. J Hydrol Reg Stud 4:60–90. doi:10.1016/j.ejrh.2015.04.009

    Article  Google Scholar 

  • Mitsova D (2014) Coupling land use change modeling with climate projections to estimate seasonal variability in runoff from an urbanizing catchment near Cincinnati, Ohio. ISPRS Int J Geo Inf 3:1256–1277. doi:10.3390/ijgi3041256

    Article  Google Scholar 

  • Mohsenipour M, Shahid S, Nazemosadat MJ (2013) Effects of El Nino-Southern oscillation on the discharge of Kor River in Iran. Adv Meteorol 2013:1–4. doi:10.1155/2013/846397

    Article  Google Scholar 

  • Mukundan R, Pradhanang SM, Schneiderman EM, Pierson DC, Anandhi A, Zion MS, Matonse AH, Lounsbury DG, Steenhuis TS (2013) Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City water supply watershed, USA. Geomorphology 183:110–119. doi:10.1016/j.geomorph.2012.06.021

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. doi:10.1016/0022-1694(70)90255-6

    Article  Google Scholar 

  • Pervez MS, Henebry GM (2015) Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin. J Hydrol Reg Stud 3:285–311. doi:10.1016/j.ejrh.2014.09.003

    Article  Google Scholar 

  • Praskievicz S (2016) Impacts of projected climate changes on streamflow and sediment transport for three snowmelt-dominated rivers in the interior Pacific Northwest. River Res Appl 32:4–17. doi:10.1002/rra.2841

    Article  Google Scholar 

  • Praskievicz S, Chang H (2009) A review of hydrological modelling of basin-scale climate change and urban development impacts. Prog Phys Geogr 33:650–671. doi:10.1177/0309133309348098

    Article  Google Scholar 

  • Praskievicz S, Chang H (2011) Impacts of climate change and urban development on water resources in the Tualatin River Basin, Oregon. Ann Assoc Am Geogr 101:249–271. doi:10.1080/00045608.2010.544934

    Article  Google Scholar 

  • Rehana S, Mujumdar PP (2011) River water quality response under hypothetical climate change scenarios in Tunga–Bhadra river, India. Hydrol Process 25:3373–3386. doi:10.1002/hyp.8057

    Article  Google Scholar 

  • Rodriguez-Lloveras X, Buytaert W, Benito G (2016) Land use can offset climate change induced increases in erosion in Mediterranean watersheds. CATENA 143:244–255. doi:10.1016/j.catena.2016.04.012

    Article  Google Scholar 

  • Ruiter A (2012) Delta-change approach for CMIP5 GCMs. Utrecht

  • Shrestha B, Babel MS, Maskey S, Van Griensven A, Uhlenbrook S, Green A, Akkharath I (2013) Impact of climate change on sediment yield in the Mekong River basin: a case study of the Nam Ou basin, Lao PDR. Hydrol Earth Syst Sci 17:1–20. doi:10.5194/hess-17-1-2013

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Thodsen H, Hasholt B, Kjærsgaard JH (2008) The influence of climate change on suspended sediment transport in Danish rivers. Hydrol Process 22:764–774. doi:10.1002/hyp.6652

    Article  Google Scholar 

  • Tong STY, Sun Y, Ranatunga T, He J, Yang YJ (2012) Predicting plausible impacts of sets of climate and land use change scenarios on water resources. Appl Geogr 32:477–489. doi:10.1016/j.apgeog.2011.06.014

    Article  Google Scholar 

  • Tu J (2009) Combined impact of climate and land use changes on streamflow and water quality in eastern Massachusetts, USA. J Hydrol 379:268–283. doi:10.1016/j.jhydrol.2009.10.009

    Article  Google Scholar 

  • Tu J, Xia Z (2008) Examining spatially varying relationships between land use and water quality using geographically weighted regression I: model design and evaluation. Sci Total Environ 407(1):358–378. doi:10.1016/j.scitotenv.2008.09.031

    Article  Google Scholar 

  • Ward PJ, van Balen RT, Verstraeten G, Renssen H, Vandenberghe J (2009) The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology 103:389–400. doi:10.1016/j.geomorph.2008.07.006

    Article  Google Scholar 

  • Whitehead PG, Johnes PJ, Butterfield D (2002) Steady state and dynamic modelling of nitrogen in the River Kennet: impacts of land use change since the 1930s. Sci Total Environ 282–283:417–434. doi:10.1016/S0048-9697(01)00927-5

    Article  Google Scholar 

  • Whitehead PG, Wilby RL, Butterfield D, Wade AJ (2006) Impacts of climate change on in-stream nitrogen in a lowland chalk stream: an appraisal of adaptation strategies. Sci Total Environ 365:260–273. doi:10.1016/j.scitotenv.2006.02.040

    Article  Google Scholar 

  • Whitehead PG, Sarkar S, Jin L, Futter MN, Caesar J, Barbour E, Butterfield D, Sinha R, Nicholls R, Hutton C, Leckie HD (2015) Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh. Environ Sci Impacts 17:1082–1097. doi:10.1039/c4em00616j

    Article  Google Scholar 

  • Wilson CO, Weng Q (2011) Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois. Sci Total Environ 409:4387–4405. doi:10.1016/j.scitotenv.2011.07.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Asadi Vaighan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaighan, A.A., Talebbeydokhti, N. & Bavani, A.M. Assessing the impacts of climate and land use change on streamflow, water quality and suspended sediment in the Kor River Basin, Southwest of Iran. Environ Earth Sci 76, 543 (2017). https://doi.org/10.1007/s12665-017-6880-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6880-6

Keywords

Navigation