Use of tree rings as indicator for groundwater level drawdown caused by tunnel excavation in Zhongliang Mountains, Chongqing, Southwest China

  • Wei Zheng
  • Xiuli Wang
  • Ya TangEmail author
  • Huang Liu
  • Mei Wang
  • Lanjun Zhang
Original Article


Tunnel excavation causes geological, hydrological, environmental and social changes. The effects of groundwater level changes caused by tunnelling on tree growth have been poorly understood. Dendrochronology was used to evaluate the impact of groundwater level drawdown on tree growth. Tree cores of Masson pines were collected from the areas affected by tunnel construction in the Zhongliang Mountains of Chongqing in south-western China to study the effects of tunnel excavation on the growth rate of trees by comparing with tree cores collected from unaffected areas. Excavation and early operation of the first tunnel in the Zhongliang Mountains from 1968 to 1984 caused a groundwater table drawdown in both karst aquifer and non-karst aquifer. The lowered groundwater table significantly reduced the growth rate of pine trees, and the low growth rate remained for 15 years. The effect was experienced up to at least 1 km from the tunnel axis. The decline in tree growth was higher in karst than in non-karst areas, though the effects on the trees of the karst areas were lagging. The high precipitation in 1998 contributed to groundwater recovery, after which the tree growth recovered moderately but not to the original level. Groundwater leakage of the recently excavated tunnels did not affect pine trees heavily, probably because the pines had adapted to the new hydrogeological conditions and new strategies in tunnel inflow management were adopted in the recently excavated tunnels. The use of tree growth rate as an indicator of groundwater table change in tunnelling areas offers a new option to study environmental impacts and the extent of tunnelling effects.


Tunnelling Groundwater leakage Ecological impacts Tree rings Karst 



This research was supported by the Program of Introducing Talents of Discipline to Universities (B08037) and the Special Fund for Geological Disaster Prevention and Control Projects of Chongqing Administration of Land, Resources and Housing. The authors thank Barnabas Seyler of the University of Hawaii for language editing and anonymous reviewers for their useful comments.


  1. Antonić O, Hatic D, Krian J, Bukovec D (2001) Modelling groundwater regime acceptable for the forest survival after the building of the hydro-electric power plant. Ecol Model 138(1–3):277–288. doi: 10.1016/S0304-3800(00)00408-7 CrossRefGoogle Scholar
  2. Arkley RJ (1981) Soil moisture use by mixed conifer forest in a summer-dry climate. Soil Sci Soc Am J 45:423–427. doi: 10.2136/sssaj1981.03615995004500020037x CrossRefGoogle Scholar
  3. Attanayake PM, Waterman MK (2006) Identifying environmental impacts of underground construction. Hydrogeol J 14:1160–1170. doi: 10.1007/s10040-006-0037-0 CrossRefGoogle Scholar
  4. Bertrand G, Goldscheider N, Gobat JM, Hunkeler D (2012) Review: from multiscale conceptualization to a classification system for inland groundwater dependent ecosystems. Hydrogeol J 20(1):5–25. doi: 10.1007/s10040-011-0791-5 CrossRefGoogle Scholar
  5. Bi HJ (2015) Mechanism analysis and treatments of water and stone inrush in Daliang tunnel (in Chinese). J Railw Eng Soc 32:82–85. doi: 10.3969/j.issn.1006-2106.2015.02.016 Google Scholar
  6. Bogino SM, Jobbágy EG (2011) Climate and groundwater effects on the establishment, growth and death of Prosopis caldenia, trees in the Pampas (Argentina). Fuel Energy Abstr 262(9):1766–1774. doi: 10.1016/j.foreco.2011.07.032 Google Scholar
  7. Bogino SM, Villalba R (2008) Radial growth and biological rotation age of Prosopis caldenia Burkart in Central Argentina. J Arid Environ 72:16–23. doi: 10.1016/j.jaridenv.2007.04.008 CrossRefGoogle Scholar
  8. Butscher C (2012) Steady-state groundwater inflow into a circular tunnel. Tunn Undergr Space Technol 32:158–167. doi: 10.1016/j.tust.2012.06.007 CrossRefGoogle Scholar
  9. Butscher C, Huggenberger P, Zechner E (2011) Impact of tunnelling on regional groundwater flow and implications for swelling of clay–sulfate rocks. Eng Geol 117:198–206. doi: 10.1016/j.enggeo.2010.10.018 CrossRefGoogle Scholar
  10. Cedro A, Lamentowicz M (2011) Contrasting responses to environmental changes by pine (Pinus sylvestris L.) growing on peat and mineral soil: an example from a Polish Baltic bog. Dendrochronologia. 29:211–217. doi: 10.1016/j.dendro.2010.12.004 CrossRefGoogle Scholar
  11. Cesano D, Olofsson B, Bagtzoglou AC (2000) Parameters regulating groundwater inflows into hard rock tunnels—a statistical study of the Bolmen tunnel in Southern Sweden. Tunn Undergr Space Technol 15:153–165. doi: 10.1016/S0886-7798(00)00043-2 CrossRefGoogle Scholar
  12. Chen X, Chen C, Hao QQ, Zhang ZC, Shi P (2008) Simulation of rainfall-underground outflow responses of a karstic watershed in Southwest China with an artificial neural network. Water Sci Eng 1(2):1–9. doi: 10.3882/j.issn.1674-2370,2008.02.001 Google Scholar
  13. Chen P, Li L, Zou JF, Zhao LH, Luo W (2013) Determination method for water discharge of tunnel based on the ecological water requirement of vegetation (in Chinese). J China Railw Soc 35:107–113. doi: 10.3969/j.issn.1001-8360.2013.07.018 Google Scholar
  14. Cheng JZ, Lee XQ, Theng BKG, Zhang L, Fang B, Li FS (2015) Biomass accumulation and carbon sequestration in an age-sequence of Zanthoxylum bungeanum plantations under the Grain for Green Program in karst regions, Guizhou province. Agric For Meteorol 203:88–95. doi: 10.1016/j.agrformet.2015.01.004 CrossRefGoogle Scholar
  15. China Railway Second Survey and Design Institute (2003) Engineering geology detailed survey report of the University Park expressway tunnel of Chongqing-Suining expressway (in Chinese, unpublished results)Google Scholar
  16. Chiu YC, Chia Y (2012) The impact of groundwater discharge to the Hsueh-Shan tunnel on the water resources in northern Taiwan. Hydrogeol J 20:1599–1611. doi: 10.1007/s10040-012-0895-6 CrossRefGoogle Scholar
  17. Chongqing Administration of Land, Resources and Housing, Chongqing Municipal Commission of Urban-Rural Development (2014) Technical Code for Geological Environment Protection of Underground Engineering (DBJ50/T-189-2014). Engineering Construction Standard of Chongqing (in Chinese)Google Scholar
  18. Chongqing Nanjiang Geological Engineering Survey and Design Institute (2015) Hydrogeological long view summary report of the Geleshan tunnel of the new Chengdu-Chongqing passenger rail lines (in Chinese, unpublished report)Google Scholar
  19. Chongqing Southeast Geological Engineering Survey and Design Institute (2007) Hydrogeological long view final summary report of the University Park tunnel of Chongqing-Suining expressway (in Chinese, unpublished report)Google Scholar
  20. Dussart E, Peinetti R (1998) Long-term dynamics of 2 population of Prosopis caldenia Burkart. J Range Manag 51(6):685–691. doi: 10.2307/4003613 CrossRefGoogle Scholar
  21. Eamus D, Froend R, Loomes R, Hose G, Murray B (2006) A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation. Aust J Bot 54(2):97–114. doi: 10.1071/BT05031 CrossRefGoogle Scholar
  22. Eamus D, Fu BH, Springer AE, Stevens LE (2016) Groundwater dependent ecosystems: classification, identification techniques and threats. In: Jakeman AJ, Barreteau O, Hunt RJ, Rinaudo JD, Ross A (eds) Integrated groundwater management. Springer, Berlin, pp 313–346. doi: 10.1007/978-3-319-23576-9_13 CrossRefGoogle Scholar
  23. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295(5563):2250–2253. doi: 10.1126/science.1066208 CrossRefGoogle Scholar
  24. Fei Y, Chuan H, Shi MW, Jin LZ (2012) Landscape design of mountain highway tunnel portals in China. Tunn Undergr Space Technol 29:52–68. doi: 10.1016/j.tust.2012.01.001 CrossRefGoogle Scholar
  25. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  26. Fu KL (2005) An analysis of the karst ground collapse and water yield of the Zhongliangshan tunnel in the Yusui expressway (in Chinese). Hydrogeol Eng Geol 32:107–110. doi: 10.3969/j.issn.1000-3665.2005.02.024 Google Scholar
  27. Gazol A, Ribas M, Gutierrez E, Camarero JJ (2017) Aleppo pine forests from across Spain show drought-induced growth decline and partial recovery. Agric For Meteorol 232:186–194. doi: 10.1016/j.agrformet.2016.08.014 CrossRefGoogle Scholar
  28. Gebrekirstos A, Noordwijk MV, Neufeldt H, Mitlöhner R (2011) Relationships of stable carbon isotopes, plant water potential and growth, an approach to assess water use efficiency and growth strategies of dry land agroforestry species. Trees 25:95–102. doi: 10.1007/s00468-010-0467-0 CrossRefGoogle Scholar
  29. Gee HKW, King SL, Keim RF (2014) Tree growth and recruitment in a leveed floodplain forest in the Mississippi River Alluvial Valley, USA. For Ecol Manag 334(334):85–95. doi: 10.1016/j.foreco.2014.08.024 CrossRefGoogle Scholar
  30. Gholami V, Chau KW, Fadaee F, Torkaman J, Ghaffari A (2015) Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. J Hydrol 529:1060–1069. doi: 10.1016/j.jhydrol.2015.09.028 CrossRefGoogle Scholar
  31. Girardin MP, Bouriaud O, Hogg EH, Kurz W, Zimmermann NE, Metsaranta JM, de Jong R, Frank DC, Esper J, Büntgen U, Guo XJ, Bhatti J (2016) No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc Natl Acad Sci USA 113(52):E8406–E8414. doi: 10.1073/pnas.1610156113 CrossRefGoogle Scholar
  32. Gong R (2010) Study on the impact of tunnel construction on the groundwater environment of the partition style karst water-rich anticline—a case study of guan yin gorge anticline (in Chinese). Chengdu University of Technology, ChengduGoogle Scholar
  33. Grant F, St GS (2003) Historical and estimated ground water levels near Winnipeg, Canada, and their sensitivity to climate variability. J Am Water Resour Assoc 39(5):1249–1259. doi: 10.1111/j.1752-1688.2003.tb03706.x CrossRefGoogle Scholar
  34. Heilman JL, Mcinnes KJ, Kjelgaard JF, Owens MK, Schwinning S (2009) Energy balance and water use in a subtropical karst woodland on the Edwards Plateau, Texas. J Hydrol 373(3–4):426–435. doi: 10.1016/j.jhydrol.2009.05.007 CrossRefGoogle Scholar
  35. Holmes RL (1983) Computer-assisted quality control in tree ring dating and measurement. Tree- Ring Bull 43:69–75Google Scholar
  36. Jackson RB, Moore LA, Hoffmann WA, Pockman WT, Linder CR (1999) Ecosystem rooting depth determined with caves and DNA. Proc Natl Acad Sci USA 96(20):11387–11392. doi: 10.1073/pnas.96.20.11387 CrossRefGoogle Scholar
  37. Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science 292:662–667. doi: 10.1126/science.1059126 CrossRefGoogle Scholar
  38. Keim RF, Izdepski CW, Day JW Jr (2012) Growth responses of baldcypress to wastewater nutrient additions and changing hydrologic regime. Wetlands 32:95–103. doi: 10.1007/s13157-011-0248-6 CrossRefGoogle Scholar
  39. Krąpiec M, Szychowska-Krąpiec E (2016) Subfossil bog-pine chronologies from The Puścizna Wielka raised bog, Orawa Basin, southern Poland. Quatern Int 415(5):145–153. doi: 10.1016/j.quaint.2015.12.045 CrossRefGoogle Scholar
  40. Kværner J, Snilsberg P (2008) The Romeriksporten rail tunnel—Drainage effects on peatlands in the lake Northern Puttjern area. Eng Geol 101:75–88. doi: 10.1016/j.enggeo.2008.04.002 CrossRefGoogle Scholar
  41. Lageard JGA, Drew IB (2008) Hydrogeomorphic control on tree growth responses in the Elton area of the Cheshire Saltfield, UK. Geomorphology 95(3):158–171. doi: 10.1016/j.geomorph.2007.05.017 CrossRefGoogle Scholar
  42. Li ZL (2004) Water environment protection and water plugging grouting design of Geleshan tunnel (in Chinese). Mod Tunn Technol 41:67–72. doi: 10.3969/j.issn.1009-6582.2004.z3.015 Google Scholar
  43. Li SC, Zhang QS (2013) Gushing mechanism and governance of tunnels and underground projects (in Chinese). China Communications Press, BeijingGoogle Scholar
  44. Li JB, Gou XH, Cook ER, Chen FH (2006) Tree-ring based drought reconstruction for the central Tien Shan area in northwest China. Geophys Res Lett 33:359–377. doi: 10.1029/2006GL025803 Google Scholar
  45. Li JB, Shi JF, Zhang DD, Yang B, Fang KY, Yue PH (2017) Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Clim Dyn 48(1–2):649–660. doi: 10.1007/s00382-016-3101-z CrossRefGoogle Scholar
  46. Liñán ID, Gutierrez E, Heinrich I, Andreu-Hayles L, Muntan E, Campelo F, Helle G (2012) Age effects and climate response in trees: a multi-proxy tree-ring test in old-growth life stages. Eur J For Res 131:933–944. doi: 10.1007/s10342-011-0566-5 CrossRefGoogle Scholar
  47. Liu CR, Yao LK (2005) Groundwater treatment and ecological environment protection of tunnelling (in Chinese). Rail Eng. doi: 10.3969/j.issn.1003-1995.2005.03.011 Google Scholar
  48. Liu BJ, Chen CL, Lian YQ, Chen JF, Chen XH (2015a) Long-term change of wet and dry climatic conditions in the southwest karst area of China. Glob Planet Change 127:1–11. doi: 10.1016/j.gloplacha.2015.01.009 CrossRefGoogle Scholar
  49. Liu T, Cao XX, Li XW (2015b) A conceptual water inflow model and characteristics of the hydraulic pressure of water-stopping points in the Mingtangshan Tunnel’s fractured zone (in Chinese). Mod Tunn Technol 52:110–116. doi: 10.13807/j.cnki.mtt.2015.05.017 Google Scholar
  50. Máguas C, Rascher KD, Martins-Louçäo A, Carvalho P, Pinho P, Ramos M, Correia O, Werner C (2011) Responses of woody species to spatial and temporal ground water changes in coastal sand dune systems. Biogeosci Discuss 8(12):3823–3832. doi: 10.5194/bg-8-3823-2011 CrossRefGoogle Scholar
  51. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787. doi: 10.1038/33859 CrossRefGoogle Scholar
  52. Manrique-Alba A, Ruiz-Yanetti S, Moutahir H, Novakb K, Luisc MD, Bellota J (2016) Soil moisture and its role in growth-climate relationships across an aridity gradient in semiarid Pinus halepensis, forests. Sci Total Environ 574:982–990. doi: 10.1016/j.scitotenv.2016.09.123 CrossRefGoogle Scholar
  53. Martin JP, Germain D (2016) Can we discriminate snow avalanches from other disturbances using the spatial patterns of tree-ring response? Case studies from the Presidential Range, White Mountains, New Hampshire, United States. Dendrochronologia 37:17–32. doi: 10.1016/j.dendro.2015.12.004 CrossRefGoogle Scholar
  54. Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Wright SJ (1999) Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121:293–301. doi: 10.1007/s004420050931 CrossRefGoogle Scholar
  55. Mendes MP, Ribeiro L, David TS, Costa A (2016) How dependent are cork oak (Quercus suber L.) woodlands on groundwater? A case study in southwestern Portugal. For Ecol Manag 378:122–130. doi: 10.1016/j.foreco.2016.07.024 CrossRefGoogle Scholar
  56. Mossmark F, Ericsson LO, Norin M, Dahlström LO (2015) Hydrochemical changes caused by underground constructions—A case study of the Kattleberg rail tunnel. Eng Geol 191:86–98. doi: 10.1016/j.enggeo.2015.03.004 CrossRefGoogle Scholar
  57. Nie YP, Chen HS, Wang KL, Tan W, Deng PY, Yang J (2011) Seasonal water use patterns of woody species growing on the continuous dolostone outcrops and nearby thin soils in subtropical China. Plant Soil 341:399–412. doi: 10.1007/s11104-010-0653-2 CrossRefGoogle Scholar
  58. Nie YP, Chen HS, Wang KL, Yang J (2012) Water source utilization by woody plants growing on dolomite outcrops and nearby soils during dry seasons in karst region of Southwest China. J Hydrol 420(4):264–274. doi: 10.1016/j.jhydrol.2011.12.011 CrossRefGoogle Scholar
  59. Pena MP, Barichivich J, Maldonado A (2014) Climatic drivers of tree growth in a swamp forest island in the semiarid coast of Chile. J Arid Environ 109:15–22. doi: 10.1016/j.jaridenv.2014.05.003 CrossRefGoogle Scholar
  60. Philips J (2015) A quantitative evaluation of the sustainability or unsustainability of three tunnelling projects. Tunn Undergr Space Technol 41:387–404. doi: 10.1016/j.tust.2015.09.009 Google Scholar
  61. Pujades E, Vázquez-Suñé E, Culí L, Carrera J, Ledesma A, Jurado A (2015) Hydrogeological impact assessment by tunnelling at sites of high sensitivity. Eng Geol 193:421–434. doi: 10.1016/j.enggeo.2015.05.018 CrossRefGoogle Scholar
  62. Qiu J (2010) China drought highlights future climate threats. Nature 465:142–143. doi: 10.1038/465142a CrossRefGoogle Scholar
  63. Raposo JR, Molinero J, Dafonte J (2010) Quantitative evaluation of hydrogeological impact produced by tunnel construction using water balance models. Eng Geol 116:323–332. doi: 10.1016/j.enggeo.2010.09.014 CrossRefGoogle Scholar
  64. Rieger I, Kowarik I, Cherubini P, Cierjacks A (2016) A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales. Sci Total Environ 6(574):1261–1275. doi: 10.1016/j.scitotenv.2016.07.174 Google Scholar
  65. Rodríguez-González PM, Campelo F, Albuquerque A, Rivaes R, Ferreira T, Pereira JS (2014) Sensitivity of black alder (Alnus glutinosa [L.] Gaertn.) growth to hydrological changes in wetland forests at the rear edge of the species distribution. Plant Ecol 215:233–245. doi: 10.1007/s11258-013-0292-9 CrossRefGoogle Scholar
  66. Sargeant CI, Singer MB (2016) Sub-annual variability in historical water source use by Mediterranean riparian trees. Ecohydrology 9(7):1328–1345. doi: 10.1002/eco.1730 CrossRefGoogle Scholar
  67. Scharnweber T, Couwenberg J, Heinrich I, Wilmking M (2015) New insights for the interpretation of ancient bog oak chronologies? Reactions of oak (Quercus rubra L.) to a sudden peatland rewetting. Palaeogeogr Palaeoclimatol Palaeoecol 417(26):534–543. doi: 10.1016/j.palaeo.2014.10.017 CrossRefGoogle Scholar
  68. Schenk HJ (2008) Soil depth, plant rooting strategies and species’ niches. New Phytol 178:223–225. doi: 10.1111/j.1469-8137.2008.02427.x CrossRefGoogle Scholar
  69. Sidorova OV, Siegwolf RTW, Myglan VS, Ovchinnikov DV, Shishov VV, Helle G, Loader NJ, Saurer M (2013) The application of tree-rings and stable isotopes for reconstructions of climate conditions in the Russian Altai. Clim Change 120:153–167. doi: 10.1007/s10584-013-0805-5 CrossRefGoogle Scholar
  70. Sjolander-Lindqvist A (2005) Conflicting perspectives on water in a Swedish railway tunnel project. Environ Values 14:221–239. doi: 10.3197/0963271054084920 CrossRefGoogle Scholar
  71. Spross J, Larsson S (2014) On the observational method for groundwater control in the Northern Link tunnel project, Stockholm, Sweden. Bull Eng Geol Environ 73:401–408. doi: 10.1007/s10064-013-0501-8 CrossRefGoogle Scholar
  72. Stemberg PD, Anderson MA, Graham RC, Beyers JL, Tice KR (1996) Root distribution and seasonal water status in weathered granitic bed rock under chaparral. Geoderma 72:89–98. doi: 10.1016/0016-7061(96)00019-5 CrossRefGoogle Scholar
  73. Strozzi T, Caduff R, Wegmuller U, Raetzo H, Hauser M (2014) Widespread surface subsidence induced in Alpine hard rocks by the construction of the 57 kilometers-long Gotthard Base Tunnel (Switzerland) observed with satellite SAR interferometry. Procedia Technol 16:69–73. doi: 10.1016/j.protcy.2014.10.069 CrossRefGoogle Scholar
  74. Sun SF, Huang JH, Lin GH, Han XG (2006) Contrasting water use strategy of co-occurring Pinus-Quercus trees in three gorges reservoir. Chin J Plant Ecol 30:57–63. doi: 10.3321/j.issn:1005-264X.2006.01.008 CrossRefGoogle Scholar
  75. Tian DL (2005) Ecosystem structure and function of Masson pine (Pinus massoniana Lamb.) and Slash pine (Pinus elliottii Engelm.) (in Chinese). Science Press, BeijingGoogle Scholar
  76. Tumajer J, Treml V (2016) Response of floodplain pedunculate oak (Quercus rubra L.) tree-ring width and vessel anatomy to climatic trends and extreme hydroclimatic events. For Ecol Manag 379:185–194. doi: 10.1016/j.foreco.2016.08.013 CrossRefGoogle Scholar
  77. Vincenzi V, Gargini A, Goldscheider N (2009) Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the Northern Apennines (Italy). Hydrogeol J 17:135–150. doi: 10.1007/s10040-008-0371-5 CrossRefGoogle Scholar
  78. Weemstra M, Eilmann B, Sass-Klaassen UGW, Sterck FJ (2013) Summer droughts limit tree growth across 10 temperate species on a productive forest site. For Ecol Manag 306(6):142–149. doi: 10.1016/j.foreco.2013.06.007 CrossRefGoogle Scholar
  79. Witt GB, English NB, Balanzategui D, Hua Q, Gadd P, Heijnis H, Bird MI (2017) The climate reconstruction potential of Acacia cambagei (gidgee) for semi-arid regions of Australia using stable isotopes and elemental abundances. J Arid Environ 136:19–27. doi: 10.1016/j.jaridenv.2016.10.002 CrossRefGoogle Scholar
  80. Witty JH, Graham RC, Hubbea KR, Doolittle JA, Wald JA (2003) Contributions of water supply from the weathered bedrock zone to forest soil quality. Geoderma 114:389–400. doi: 10.1016/S0016-7061(03)00051-X CrossRefGoogle Scholar
  81. Xue YG, Li SC, Zhang QS, Li SC, Su MX, Liu B, Liu Q (2008) Geological prediction of karst-fractured groundwater in tunnel informational construction (in Chinese). Rock Soil Mech 29:3360–3364. doi: 10.3969/j.issn.1000-7598.2008.12.034 Google Scholar
  82. Yang T (2004) The investigation and study to natural secondary mixed forest’s biomass and the root system’s spreading character of the oak and the horse-tail pine. J Xinyang Agric Coll 14:4–9. doi: 10.3969/j.issn.1008-4916.2004.04.002 Google Scholar
  83. Yang CJ (2007) Investigation and study of groundwater soil environment in Xuefeng Mountain tunnel area (in Chinese). Central South University, ChangshaGoogle Scholar
  84. Yang FR, Lee CH, Kung WJ, Yeh HF (2009) The impact of tunnelling construction on the hydrogeological environment of “Tseng-Wen Reservoir Transbasin Diversion Project” in Taiwan. Eng Geol 103:39–58. doi: 10.1016/j.enggeo.2008.07.012 CrossRefGoogle Scholar
  85. Yang FT, Feng ZM, Wang HM, Dai XQ, Fu XQ (2017) Deep soil water extraction helps to drought avoidance but shallow soil water uptake during dry season controls the inter-annual variation in tree growth in four subtropical plantations. Agric For Meteorol 234–235:106–114. doi: 10.1016/j.agrformet.2016.12.020 CrossRefGoogle Scholar
  86. Yanosky TM (1982) Hydrologic inferences from ring widths of flood damaged trees, Potomac River Maryland. Environ Geol 4(1):43–52. doi: 10.1007/BF02380498 CrossRefGoogle Scholar
  87. Yanosky TM (1984) Documentation of high summer flows on the Potomac River from the wood anatomy of ash trees. Water Resour Bull 20:241–250. doi: 10.1111/j.1752-1688.1984.tb04678.x CrossRefGoogle Scholar
  88. Yanosky TM, Kappel WM (1997) Effects of solution mining of salt on wetland hydrology as inferred from tree rings. Water Resour Res 33(3):457–470. doi: 10.1029/96WR03688 CrossRefGoogle Scholar
  89. Zhang JL, Zhu JJ, Cao KF (2007) Seasonal variation in photosynthesis in six wood species with different leaf phenology in a valley savanna in southwestern China. Trees 21(6):631–643. doi: 10.1007/s00468-007-0156-9 CrossRefGoogle Scholar
  90. Zhang ZJ, Wang YH, Yu PT, Yuan YX, Li ZY, Zhang GX, Liu YG (2008) Characteristics of biomass and root distribution of P. massoniana with different dominance (in Chinese). J Nanjing For Uni Nat Sci. 32:71–75. doi: 10.3969/j.jssn.1000-2006.2008.04.016 Google Scholar
  91. Zhao Y, Li PF, Tian SM (2013) Prevention and treatment technologies of railway tunnel water inrush and mud gushing in China. J Rock Mech Geotechn Eng 5:468–477. doi: 10.1016/j.jrmge.2013.07.009 CrossRefGoogle Scholar
  92. Zhao R, Xu M, Fan CC (2015) Numerical simulation of the Groundwater seepage field of a tunnel group in an ejective anticline zone (in Chinese). Mod Tunn Technol 52:69–74. doi: 10.13807/j.cnki.mtt.2015.03.010 Google Scholar
  93. Zhong SH, Sun HZ, Li SC, Li X, Wang R (2012) Detection and forecasting for hidden danger of karst fissure water and other geological during construction of tunnels and underground projects (in Chinese). Chin J Rock Mech Eng 31:3298–3327. doi: 10.3969/j.issn.1000-6915.2012.z1.095 Google Scholar
  94. Zhu SQ (1997) Ecological research on Karst forest II (in Chinese). Guizhou Science and Technology Press, GuiyangGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Wei Zheng
    • 1
    • 2
  • Xiuli Wang
    • 1
  • Ya Tang
    • 1
    Email author
  • Huang Liu
    • 2
  • Mei Wang
    • 2
  • Lanjun Zhang
    • 2
  1. 1.Department of Environmental Sciences and EngineeringSichuan UniversityChengduChina
  2. 2.China Merchants Chongqing Communications Technology Research & Design Institute Co., LTD.ChongqingChina

Personalised recommendations