Skip to main content
Log in

Iodine in major Danish aquifers

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Iodine in groundwater can have direct importance for human dietary iodine intake in areas where drinking water is of groundwater origin, as in Denmark. Knowledge on the sources and processes for the varying iodine concentrations in groundwater is of utmost importance for understanding the variation in iodine intake of the population via drinking water. The aim of this study was to characterize groundwater with elevated iodine concentrations and to investigate the sources and processes controlling natural iodine speciation and concentration at four study sites in Denmark with postglacial sandy, Quaternary sandy, and Cretaceous limestone aquifers. Analyses included iodide (I), iodate (IO3 ), total iodine (TI), major ions, and stable H and O isotopes. Dissolved organic iodine (DOI) was calculated by subtracting I and IO 3 from TI. A diagram of stable δ18O and δ2H isotopes in Danish groundwater was compiled in order to interpret the groundwater iodine geochemistry. Groundwater had TI concentrations from 5 to 14,500 µg/L. Iodine speciation reflected the prevailing neutral to alkaline and reduced conditions at the investigated sites with domination of I and DOI correlated with dissolved organic carbon. We found three different explanations for elevated TI concentrations at the four Danish sites: (1) leaching from soil enriched in iodine due to atmospheric deposition and proximity to the sea, (2) influence from the marine origin of the aquifer sediment due to desorption of iodine from iodine-enriched organic matter or minerals, and (3) influence from residual saline water due to upward advective or/and diffusive transport of iodine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andersen S, Petersen SB, Laurberg P (2002) Iodine in drinking water in Denmark is bound in humic substances. Eur J Endocrinol 147:663–670

    Article  Google Scholar 

  • Andersson M, De Benoist B, Darnton-Hill I, Delange FM (2007) Iodine deficiency in Europe: a continuing public health problem. World Health Organization, Geneva

  • Andersen S, Pedersen KM, Iversen F et al (2008) Naturally occurring iodine in humic substances in drinking water in Denmark is bioavailable and determines population iodine intake. Br J Nutr 99:319–325. doi:10.1017/S0007114507803941

    Google Scholar 

  • Appelo CAJ, Postma D (2010) Geochemistry, Groundwater and Pollution, Second Edition, fifth corr. A.A. Balkema Publishers, Amsterdam

    Google Scholar 

  • Bonnesen EP, Larsen F, Sonnenborg TO et al (2009) Deep saltwater in Chalk of North-West Europe: origin, interface characteristics and development over geological time. Hydrogeol J 17:1643–1663. doi:10.1007/s10040-009-0456-9

    Article  Google Scholar 

  • Breuning-Madsen H, Jensen NH (1996) Soil map of Denmark according to the revised FAO legend 1990. Geografisk Tidsskrift-Danish J Geography 96:51–59

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology, illustrate. CRC Press, Boca Raton

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. doi:10.1126/science.133.3465.1702

    Article  Google Scholar 

  • Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:338–350. doi:10.1111/j.1745-6584.1998.tb01099.x

    Article  Google Scholar 

  • Frich P, Rosenørn S, Madsen H, Jensen JJ (1997) Observed Precipitation in Denmark, 1961–90. DMI Tech Report. Danish Meteorological Institute, Copenhagen, p 38

  • Fuge R (2005) Soils and Iodine Deficiency. In: Selinus O, Alloway B, Centeno J et al (eds) Essentials of medical geology: impacts of the natural environment on public health. Elsevier Academic Press, Amsterdam, Boston, pp 417–433

    Google Scholar 

  • Fuge R, Johnson CC (1986) The geochemistry of iodine—a review. Environ Geochem Health 8:31–54. doi:10.1007/BF02311063

    Article  Google Scholar 

  • Fuge R, Johnson CC (2015) Iodine and human health, the role of environmental geochemistry and diet, a review. Appl Geochem 63:282–302. doi:10.1016/j.apgeochem.2015.09.013

    Article  Google Scholar 

  • GEUS JUPITER—Danmarks geologiske & hydrologiske database. http://www.geus.dk/DK/data-maps/jupiter/Sider/default.aspx

  • Geyh M (2000) Groundwater: saturated and unsaturated zone. In: Mook (ed) Environmental isotopes in the hydrological cycle: principles and applications, vol 4. UNESCO/IAEA, p 190

  • Hansen B, Mossin L, Ramsay L et al (2009) Kemisk grundvandskortlægning (Geo-vejledning 6). Geological Survey of Denmark and Greenland (GEUS), Copenhagen

  • Jørgensen NO (2002) Origin of shallow saline groundwater on the Island of Læsø, Denmark. Chem Geol 184:359–370. doi:10.1016/S0009-2541(01)00392-8

    Article  Google Scholar 

  • Jørgensen NO, Holm PM (1995) Strontium-isotope studies of chloride-contaminated groundwater, Denmark. Hydrogeol J 3:52–57. doi:10.1007/s100400050066

    Article  Google Scholar 

  • Jørgensen NO, Morthorst J, Holm PM (1999) Strontium-isotope studies of “brown water” (organic-rich groundwater) from Denmark. Hydrogeol J 7:533–539. doi:10.1007/s100400050226

    Article  Google Scholar 

  • Kennedy CB, Gault AG, Fortin D et al (2011) Retention of iodide by bacteriogenic iron oxides. Geomicrobiol J 28:387–395. doi:10.1080/01490451003653110

    Article  Google Scholar 

  • Kristiansen SM, Christensen FD, Hansen B (2009) Vurdering af danske grundvandsmagasiners sårbarhed overfor vejsalt. Geological Survey of Denmark and Greenland (GEUS), Copenhagen

  • Laurberg P, Jørgensen T, Perrild H et al (2006) The Danish investigation on iodine intake and thyroid disease, DanThyr: status and perspectives. Eur J Endocrinol 155:219–228. doi:10.1530/eje.1.02210

    Article  Google Scholar 

  • Laursen EV, Thomsen Sjølin R, Cappelen J (1999) Observed air temperature, humidity, pressure, cloud cover and weather in Denmark—with climatological standard normals, 1961–90. Danish Meteorological Institute (DMI), Copenhagen

  • Li J, Wang Y, Xie X et al (2013) Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China. Environ Sci Process Impacts 15:848–859. doi:10.1039/c3em30841c

    Article  Google Scholar 

  • Li J, Wang Y, Guo W et al (2014) Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics. Sci Total Environ 468–469:738–745. doi:10.1016/j.scitotenv.2013.08.092

    Article  Google Scholar 

  • Lloyd JW, Howard KWF, Pacey NR, Tellam JH (1982) The value of iodide as a parameter in the chemical characterisation of groundwaters. J Hydrol 57:247–265. doi:10.1016/0022-1694(82)90149-4

    Article  Google Scholar 

  • Lv S, Wang Y, Xu D et al (2013) Drinking water contributes to excessive iodine intake among children in Hebei, China. Eur J Clin Nutr 67:961–965. doi:10.1038/ejcn.2013.127

    Article  Google Scholar 

  • Mook WG (2000) Introduction, methods, review. Environmental isotopes in the hydrological cycle: principles and applications, reprinted, vol 1. UNESCO/IAEA, p 164

  • Muramatsu Y, Wedepohl HK (1998) The distribution of iodine in the Earth’s crust. Chem Geol 147:201–216. doi:10.1016/S0009-2541(98)00013-8

    Article  Google Scholar 

  • Pedersen KM, Laurberg P, Nohr S et al (1999) Iodine in drinking water varies by more than 100-fold in Denmark. Importance for iodine content of infant formulas. Eur J Endocrinol 140:400–403. doi:10.1530/eje.0.1400400

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans Am Geophys Union 25:914. doi:10.1029/TR025i006p00914

    Article  Google Scholar 

  • Pratt A (2003) Typediagrammet til klassificering af vandtyper—en opdatering. DanskVand: fra kildevand til spildevand 71(4):206–208

  • Richard L, Gaona X (2011) Thermodynamic properties of organic iodine compounds. Geochim Cosmochim Acta 75:7304–7350. doi:10.1016/j.gca.2011.07.030

    Article  Google Scholar 

  • Shen H, Liu S, Sun D et al (2011) Geographical distribution of drinking-water with high iodine level and association between high iodine level in drinking-water and goitre: a Chinese national investigation. Br J Nutr 106:243–247. doi:10.1017/S0007114511000055

    Article  Google Scholar 

  • Shimamoto YS, Takahashi Y, Terada Y (2011) Formation of organic iodine supplied as iodide in a soil-water system in Chiba, Japan. Environ Sci Technol 45:2086–2092. doi:10.1021/es1032162

    Article  Google Scholar 

  • Stemmerik L, Surlyk F, Klitten K et al (2006) Shallow core drilling of the upper cretaceous chalk at Stevns Klint, Denmark. Geol Survey Denmark Greenland Bull 10:13–16

    Google Scholar 

  • Tang Q, Xu Q, Zhang F et al (2013) Geochemistry of iodine-rich groundwater in the Taiyuan Basin of central Shanxi Province, North China. J Geochemical Explor 135:117–123. doi:10.1016/j.gexplo.2012.08.019

    Article  Google Scholar 

  • Thomsen R, Søndergaard VH, Sørensen KI (2004) Hydrogeological mapping as a basis for establishing site-specific groundwater protection zones in Denmark. Hydrogeol J 12:550–562. doi:10.1007/s10040-004-0345-1

    Article  Google Scholar 

  • Voutchkova DD, Ernstsen V, Hansen B et al (2014a) Assessment of spatial variation in drinking water iodine and its implications for dietary intake: a new conceptual model for Denmark. Sci Total Environ 493:432–444. doi:10.1016/j.scitotenv.2014.06.008

    Article  Google Scholar 

  • Voutchkova DD, Kristiansen SM, Hansen B et al (2014b) Iodine concentrations in Danish groundwater: historical data assessment 1933–2011. Environ Geochem Health 36:1151–1164. doi:10.1007/s10653-014-9625-4

    Article  Google Scholar 

  • Voutchkova D, Schullehner J, Knudsen N et al (2015) Exposure to selected geogenic trace elements (I, Li, and Sr) from drinking water in Denmark. Geosciences 5:45–66. doi:10.3390/geosciences5010045

    Article  Google Scholar 

  • Whitehead DC (1984) The distribution and transformations of iodine in the environment. Environ Int 10:321–339. doi:10.1016/0160-4120(84)90139-9

    Article  Google Scholar 

  • Yamaguchi N, Nakano M, Takamatsu R, Tanida H (2010) Inorganic iodine incorporation into soil organic matter: evidence from iodine K-edge X-ray absorption near-edge structure. J Environ Radioact 101:451–457. doi:10.1016/j.jenvrad.2008.06.003

    Article  Google Scholar 

  • Yoshida Y, Muramatsu S (1999) Effects of microorganisms on the fate of iodine in the soil environment. Geomicrobiol J 16:85–93. doi:10.1080/014904599270776

    Article  Google Scholar 

  • Zhang S, Du J, Xu C et al (2011) Concentration-dependent mobility, retardation, and speciation of iodine in surface sediment from the savannah river site. Environ Sci Technol 45:5543–5549. doi:10.1021/es1040442

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of GEOCENTER (Denmark) project, funded by Geological Survey of Denmark and Greenland (GEUS) and Aarhus University (Denmark). We would like to thank Frederikshavn Vand A/S and Verdo Vand A/S for giving us access to their waterworks and well sites and to their staff for assisting us and providing valuable information, especially Rasmus Bærentzen and Børge Hylander. Acknowledgements are due also to the GEUS laboratory staff, especially Christina Rosenberg Lynge, Pernille Stockmarr, and Jørgen Kystol. Last but not least, coordinator Lasse Gudmundsson is thanked for the assistance with the groundwater sampling and the invaluable help with the organizing/logistics of the sampling campaign.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denitza Dimitrova Voutchkova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2786 kb)

Supplementary material 2 (XLSX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voutchkova, D.D., Ernstsen, V., Kristiansen, S.M. et al. Iodine in major Danish aquifers. Environ Earth Sci 76, 447 (2017). https://doi.org/10.1007/s12665-017-6775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6775-6

Keywords

Navigation