Iodine in major Danish aquifers

  • Denitza Dimitrova Voutchkova
  • Vibeke Ernstsen
  • Søren Munch Kristiansen
  • Birgitte Hansen
Original Article

Abstract

Iodine in groundwater can have direct importance for human dietary iodine intake in areas where drinking water is of groundwater origin, as in Denmark. Knowledge on the sources and processes for the varying iodine concentrations in groundwater is of utmost importance for understanding the variation in iodine intake of the population via drinking water. The aim of this study was to characterize groundwater with elevated iodine concentrations and to investigate the sources and processes controlling natural iodine speciation and concentration at four study sites in Denmark with postglacial sandy, Quaternary sandy, and Cretaceous limestone aquifers. Analyses included iodide (I), iodate (IO3), total iodine (TI), major ions, and stable H and O isotopes. Dissolved organic iodine (DOI) was calculated by subtracting I and IO3 from TI. A diagram of stable δ18O and δ2H isotopes in Danish groundwater was compiled in order to interpret the groundwater iodine geochemistry. Groundwater had TI concentrations from 5 to 14,500 µg/L. Iodine speciation reflected the prevailing neutral to alkaline and reduced conditions at the investigated sites with domination of I and DOI correlated with dissolved organic carbon. We found three different explanations for elevated TI concentrations at the four Danish sites: (1) leaching from soil enriched in iodine due to atmospheric deposition and proximity to the sea, (2) influence from the marine origin of the aquifer sediment due to desorption of iodine from iodine-enriched organic matter or minerals, and (3) influence from residual saline water due to upward advective or/and diffusive transport of iodine.

Keywords

Denmark Hydrogeochemistry Iodide Iodine Groundwater Spatial heterogeneity 

Notes

Acknowledgements

This study is part of GEOCENTER (Denmark) project, funded by Geological Survey of Denmark and Greenland (GEUS) and Aarhus University (Denmark). We would like to thank Frederikshavn Vand A/S and Verdo Vand A/S for giving us access to their waterworks and well sites and to their staff for assisting us and providing valuable information, especially Rasmus Bærentzen and Børge Hylander. Acknowledgements are due also to the GEUS laboratory staff, especially Christina Rosenberg Lynge, Pernille Stockmarr, and Jørgen Kystol. Last but not least, coordinator Lasse Gudmundsson is thanked for the assistance with the groundwater sampling and the invaluable help with the organizing/logistics of the sampling campaign.

Supplementary material

12665_2017_6775_MOESM1_ESM.doc (2.7 mb)
Supplementary material 1 (DOC 2786 kb)
12665_2017_6775_MOESM2_ESM.xlsx (20 kb)
Supplementary material 2 (XLSX 19 kb)

References

  1. Andersen S, Petersen SB, Laurberg P (2002) Iodine in drinking water in Denmark is bound in humic substances. Eur J Endocrinol 147:663–670CrossRefGoogle Scholar
  2. Andersson M, De Benoist B, Darnton-Hill I, Delange FM (2007) Iodine deficiency in Europe: a continuing public health problem. World Health Organization, GenevaGoogle Scholar
  3. Andersen S, Pedersen KM, Iversen F et al (2008) Naturally occurring iodine in humic substances in drinking water in Denmark is bioavailable and determines population iodine intake. Br J Nutr 99:319–325. doi:10.1017/S0007114507803941 Google Scholar
  4. Appelo CAJ, Postma D (2010) Geochemistry, Groundwater and Pollution, Second Edition, fifth corr. A.A. Balkema Publishers, AmsterdamGoogle Scholar
  5. Bonnesen EP, Larsen F, Sonnenborg TO et al (2009) Deep saltwater in Chalk of North-West Europe: origin, interface characteristics and development over geological time. Hydrogeol J 17:1643–1663. doi:10.1007/s10040-009-0456-9 CrossRefGoogle Scholar
  6. Breuning-Madsen H, Jensen NH (1996) Soil map of Denmark according to the revised FAO legend 1990. Geografisk Tidsskrift-Danish J Geography 96:51–59Google Scholar
  7. Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology, illustrate. CRC Press, Boca RatonGoogle Scholar
  8. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703. doi:10.1126/science.133.3465.1702 CrossRefGoogle Scholar
  9. Davis SN, Whittemore DO, Fabryka-Martin J (1998) Uses of chloride/bromide ratios in studies of potable water. Ground Water 36:338–350. doi:10.1111/j.1745-6584.1998.tb01099.x CrossRefGoogle Scholar
  10. Frich P, Rosenørn S, Madsen H, Jensen JJ (1997) Observed Precipitation in Denmark, 1961–90. DMI Tech Report. Danish Meteorological Institute, Copenhagen, p 38Google Scholar
  11. Fuge R (2005) Soils and Iodine Deficiency. In: Selinus O, Alloway B, Centeno J et al (eds) Essentials of medical geology: impacts of the natural environment on public health. Elsevier Academic Press, Amsterdam, Boston, pp 417–433Google Scholar
  12. Fuge R, Johnson CC (1986) The geochemistry of iodine—a review. Environ Geochem Health 8:31–54. doi:10.1007/BF02311063 CrossRefGoogle Scholar
  13. Fuge R, Johnson CC (2015) Iodine and human health, the role of environmental geochemistry and diet, a review. Appl Geochem 63:282–302. doi:10.1016/j.apgeochem.2015.09.013 CrossRefGoogle Scholar
  14. GEUS JUPITER—Danmarks geologiske & hydrologiske database. http://www.geus.dk/DK/data-maps/jupiter/Sider/default.aspx
  15. Geyh M (2000) Groundwater: saturated and unsaturated zone. In: Mook (ed) Environmental isotopes in the hydrological cycle: principles and applications, vol 4. UNESCO/IAEA, p 190Google Scholar
  16. Hansen B, Mossin L, Ramsay L et al (2009) Kemisk grundvandskortlægning (Geo-vejledning 6). Geological Survey of Denmark and Greenland (GEUS), CopenhagenGoogle Scholar
  17. Jørgensen NO (2002) Origin of shallow saline groundwater on the Island of Læsø, Denmark. Chem Geol 184:359–370. doi:10.1016/S0009-2541(01)00392-8 CrossRefGoogle Scholar
  18. Jørgensen NO, Holm PM (1995) Strontium-isotope studies of chloride-contaminated groundwater, Denmark. Hydrogeol J 3:52–57. doi:10.1007/s100400050066 CrossRefGoogle Scholar
  19. Jørgensen NO, Morthorst J, Holm PM (1999) Strontium-isotope studies of “brown water” (organic-rich groundwater) from Denmark. Hydrogeol J 7:533–539. doi:10.1007/s100400050226 CrossRefGoogle Scholar
  20. Kennedy CB, Gault AG, Fortin D et al (2011) Retention of iodide by bacteriogenic iron oxides. Geomicrobiol J 28:387–395. doi:10.1080/01490451003653110 CrossRefGoogle Scholar
  21. Kristiansen SM, Christensen FD, Hansen B (2009) Vurdering af danske grundvandsmagasiners sårbarhed overfor vejsalt. Geological Survey of Denmark and Greenland (GEUS), CopenhagenGoogle Scholar
  22. Laurberg P, Jørgensen T, Perrild H et al (2006) The Danish investigation on iodine intake and thyroid disease, DanThyr: status and perspectives. Eur J Endocrinol 155:219–228. doi:10.1530/eje.1.02210 CrossRefGoogle Scholar
  23. Laursen EV, Thomsen Sjølin R, Cappelen J (1999) Observed air temperature, humidity, pressure, cloud cover and weather in Denmark—with climatological standard normals, 1961–90. Danish Meteorological Institute (DMI), CopenhagenGoogle Scholar
  24. Li J, Wang Y, Xie X et al (2013) Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China. Environ Sci Process Impacts 15:848–859. doi:10.1039/c3em30841c CrossRefGoogle Scholar
  25. Li J, Wang Y, Guo W et al (2014) Iodine mobilization in groundwater system at Datong basin, China: evidence from hydrochemistry and fluorescence characteristics. Sci Total Environ 468–469:738–745. doi:10.1016/j.scitotenv.2013.08.092 CrossRefGoogle Scholar
  26. Lloyd JW, Howard KWF, Pacey NR, Tellam JH (1982) The value of iodide as a parameter in the chemical characterisation of groundwaters. J Hydrol 57:247–265. doi:10.1016/0022-1694(82)90149-4 CrossRefGoogle Scholar
  27. Lv S, Wang Y, Xu D et al (2013) Drinking water contributes to excessive iodine intake among children in Hebei, China. Eur J Clin Nutr 67:961–965. doi:10.1038/ejcn.2013.127 CrossRefGoogle Scholar
  28. Mook WG (2000) Introduction, methods, review. Environmental isotopes in the hydrological cycle: principles and applications, reprinted, vol 1. UNESCO/IAEA, p 164Google Scholar
  29. Muramatsu Y, Wedepohl HK (1998) The distribution of iodine in the Earth’s crust. Chem Geol 147:201–216. doi:10.1016/S0009-2541(98)00013-8 CrossRefGoogle Scholar
  30. Pedersen KM, Laurberg P, Nohr S et al (1999) Iodine in drinking water varies by more than 100-fold in Denmark. Importance for iodine content of infant formulas. Eur J Endocrinol 140:400–403. doi:10.1530/eje.0.1400400 CrossRefGoogle Scholar
  31. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Trans Am Geophys Union 25:914. doi:10.1029/TR025i006p00914 CrossRefGoogle Scholar
  32. Pratt A (2003) Typediagrammet til klassificering af vandtyper—en opdatering. DanskVand: fra kildevand til spildevand 71(4):206–208Google Scholar
  33. Richard L, Gaona X (2011) Thermodynamic properties of organic iodine compounds. Geochim Cosmochim Acta 75:7304–7350. doi:10.1016/j.gca.2011.07.030 CrossRefGoogle Scholar
  34. Shen H, Liu S, Sun D et al (2011) Geographical distribution of drinking-water with high iodine level and association between high iodine level in drinking-water and goitre: a Chinese national investigation. Br J Nutr 106:243–247. doi:10.1017/S0007114511000055 CrossRefGoogle Scholar
  35. Shimamoto YS, Takahashi Y, Terada Y (2011) Formation of organic iodine supplied as iodide in a soil-water system in Chiba, Japan. Environ Sci Technol 45:2086–2092. doi:10.1021/es1032162 CrossRefGoogle Scholar
  36. Stemmerik L, Surlyk F, Klitten K et al (2006) Shallow core drilling of the upper cretaceous chalk at Stevns Klint, Denmark. Geol Survey Denmark Greenland Bull 10:13–16Google Scholar
  37. Tang Q, Xu Q, Zhang F et al (2013) Geochemistry of iodine-rich groundwater in the Taiyuan Basin of central Shanxi Province, North China. J Geochemical Explor 135:117–123. doi:10.1016/j.gexplo.2012.08.019 CrossRefGoogle Scholar
  38. Thomsen R, Søndergaard VH, Sørensen KI (2004) Hydrogeological mapping as a basis for establishing site-specific groundwater protection zones in Denmark. Hydrogeol J 12:550–562. doi:10.1007/s10040-004-0345-1 CrossRefGoogle Scholar
  39. Voutchkova DD, Ernstsen V, Hansen B et al (2014a) Assessment of spatial variation in drinking water iodine and its implications for dietary intake: a new conceptual model for Denmark. Sci Total Environ 493:432–444. doi:10.1016/j.scitotenv.2014.06.008 CrossRefGoogle Scholar
  40. Voutchkova DD, Kristiansen SM, Hansen B et al (2014b) Iodine concentrations in Danish groundwater: historical data assessment 1933–2011. Environ Geochem Health 36:1151–1164. doi:10.1007/s10653-014-9625-4 CrossRefGoogle Scholar
  41. Voutchkova D, Schullehner J, Knudsen N et al (2015) Exposure to selected geogenic trace elements (I, Li, and Sr) from drinking water in Denmark. Geosciences 5:45–66. doi:10.3390/geosciences5010045 CrossRefGoogle Scholar
  42. Whitehead DC (1984) The distribution and transformations of iodine in the environment. Environ Int 10:321–339. doi:10.1016/0160-4120(84)90139-9 CrossRefGoogle Scholar
  43. Yamaguchi N, Nakano M, Takamatsu R, Tanida H (2010) Inorganic iodine incorporation into soil organic matter: evidence from iodine K-edge X-ray absorption near-edge structure. J Environ Radioact 101:451–457. doi:10.1016/j.jenvrad.2008.06.003 CrossRefGoogle Scholar
  44. Yoshida Y, Muramatsu S (1999) Effects of microorganisms on the fate of iodine in the soil environment. Geomicrobiol J 16:85–93. doi:10.1080/014904599270776 CrossRefGoogle Scholar
  45. Zhang S, Du J, Xu C et al (2011) Concentration-dependent mobility, retardation, and speciation of iodine in surface sediment from the savannah river site. Environ Sci Technol 45:5543–5549. doi:10.1021/es1040442 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Denitza Dimitrova Voutchkova
    • 1
    • 2
    • 4
  • Vibeke Ernstsen
    • 3
  • Søren Munch Kristiansen
    • 4
  • Birgitte Hansen
    • 2
  1. 1.Department of GeographyNational University of SingaporeKent RidgeSingapore
  2. 2.Geological Survey of Denmark and Greenland (GEUS)HøjbjergDenmark
  3. 3.Geological Survey of Denmark and Greenland (GEUS)Copenhagen KDenmark
  4. 4.Department of GeoscienceAarhus UniversityAarhus CDenmark

Personalised recommendations