Skip to main content
Log in

Comparing the performance of TRIGRS and TiVaSS in spatial and temporal prediction of rainfall-induced shallow landslides

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study compares the performance of transient rainfall infiltration and grid-based regional slope stability (TRIGRS) model and time-variant slope stability (TiVaSS) model in the prediction of rainfall-induced shallow landslides. TRIGRS employs one-dimensional (1-D) subsurface flow to simulate the infiltration rate, whereas a three-dimensional (3-D) model is utilized in TiVaSS. The former has been widely used in landslide modeling, while the latter was developed only recently. Both programs are used for the spatiotemporal prediction of shallow landslides caused by rainfall. This study uses the July 2011 landslide event that occurred in Mt. Umyeon, Seoul, Korea, for validation. The performance of the two programs is evaluated by comparison with data of the actual landslides in both location and timing by using a landslide ratio for each factor of safety class (\({\text{LR}}_{\text{class}}\) index), which was developed for addressing point-like landslide locations. Moreover, the influence of surface flow on landslide initiation is assessed. The results show that the shallow landslides predicted by the two models are highly consistent with those of the observed sliding sites, although the performance of TiVaSS is slightly better. Overland flow affects the buildup of the pressure head and reduces the slope stability, although this influence was not significant in this case. A slight increase in the predicted unstable area from 19.30 to 19.93% was recorded when the overland flow was considered. It is concluded that both models are suitable for application in the study area. However, although it is a well-established model requiring less input data and shorter run times, TRIGRS produces less accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alvioli M, Baum RL (2016) Parallelization of the TRIGRS model for rainfall-induced landslides using the message passing interface. Environ Model Softw 81:122–135. doi:10.1016/j.envsoft.2016.04.002

    Article  Google Scholar 

  • Alvioli M, Guzzetti F, Rossi M (2014) Scaling properties of rainfall-induced landslides predicted by a physically based model. Geomorphology 213:38–47. doi:10.1016/j.geomorph.2013.12.039

    Article  Google Scholar 

  • An H, Yu S (2014) Finite volume integrated surface-subsurface flow modeling on non-orthogonal grids. Water Resour Res 50(3):2312–2328. doi:10.1002/2013WR013828

    Article  Google Scholar 

  • An H, Viet TT, Lee GH, Kim Y, Kim M, Noh S, Noh J (2016) Development of time-variant landslide-prediction software considering three-dimensional subsurface unsaturated flow. Environ Model Softw 85:172–183. doi:10.1016/j.envsoft.2016.08.009

    Article  Google Scholar 

  • Baek MH, Kim TH (2015) A study on the use of planarity for quick identification of potential landslide hazard. Nat Hazards Earth Syst Sci 15(5):997–1009

    Article  Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2008) TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope stability analysis, version 2.0. Virginia, U.S. Department of the Interior. U.S. Geological Survey. pp 1–75

  • Baum RL, Godt JW, Savage WZ (2010) Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration. J Geophys Res 115(F3):1–26. doi:10.1029/2009JF001321

    Article  Google Scholar 

  • Caine N (1980) The rainfall intensity—duration control of shallow landslides and debris flows. Geogr Ann 62A(1–2):23–27

    Article  Google Scholar 

  • Catani F, Segoni S, Falorni G (2010) An empirical geomorphology-based approach to the spatial prediction of soil thickness at catchment scale. Water Resour Res 46(5):1–15. doi:10.1029/2008WR007450

    Article  Google Scholar 

  • Chang H, Kwon WT (2007) Spatial variations of summer precipitation trends in South Korea, 1973–2005. Environ Res Lett 2(4):1–9. doi:10.1088/1748-9326/2/4/045012

    Article  Google Scholar 

  • Formetta G, Capparelli G, Versace P (2015) Evaluating performances of simplified physically based models for landslide susceptibility. Hydrol Earth Syst Sci Discuss 12:13217–13256. doi:10.5194/hessd-12-13217-2015

    Article  Google Scholar 

  • Gardner WR (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Sci 85(4):228–232

    Article  Google Scholar 

  • Godt JW, Baum RL, Savage WZ, Salciarini D, Schulz WH, Harp EL (2008) Transient deterministic shallow landslide modeling: requirements for susceptibility and hazard assessments in a GIS framework. Eng Geol 102(3–4):214–226. doi:10.1016/j.enggeo.2008.03.019

    Article  Google Scholar 

  • Gostelow P (1991) Rainfall and landslides. In: Teixeira A (ed) Prevention and control of landslides and other mass movements. CEC, Brussels, pp 139–161

  • Huang J, Ju NP, Liao YJ, Liu DD (2015) Determination of rainfall thresholds for shallow landslides by a probabilistic and empirical method. Nat Hazards Earth Syst Sci 15(12):2715–2723. doi:10.5194/nhess-15-2715-2015

    Article  Google Scholar 

  • Iverson RM (1991) Sensitivity of stability analyses to groundwater data. In: Bell DH (ed) Proceedings of the sixth international symposium on landslides. Balkema, Rotterdam, pp 451–457

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910

    Article  Google Scholar 

  • Jeong S, Kim Y, Lee JK, Kim J (2015) The 27 July 2011 debris flows at Umyeonsan, Seoul, Korea. Landslides 12:799–813

    Article  Google Scholar 

  • Jung HS, Choi Y, Oh JH, Lim GH (2002) Recent trends in temperature and precipitation over South Korea. Int J Climatol 22(11):1327–1337

    Article  Google Scholar 

  • Kim J (2012). Hazard area mapping during extreme rainstorms in South Korean mountain. Department of Civil and Environmental Engineering. Colorado, Colorado State University. Ph.D. Thesis, p 145

  • Kim D, Im S, Lee SH, Hong Y, Cha KS (2010) Predicting the rainfall-triggered landslides in a forested mountain region using TRIGRS model. J Mt Sci 7(1):83–91

    Article  Google Scholar 

  • Korean Society of Civil Engineers (2011) Research contract report: causes survey and restoration work of Mt. Woomyeon landslide (in Korean), Seoul, pp 1–245

  • Lee SG, Lee KS, Villemin DC, Hencher S. (2008). Characteristics of landslides related to various rock types in Korea. In: Chen Z, Zhang J, Li Z, Wu F, Ho K (eds) 10th international symposium on landslides and engineered slopes. CRC Press, Xi’an, China, pp 427–433. doi: 10.1201/9780203885284-c44

  • Lu N, Likos WJ (2006) Suction stress characteristic curve for unsaturated Soil. J Geotech Geoenviron Eng 132(6):131–142

    Article  Google Scholar 

  • Mandal S, Maiti R (2015) Slope stability model and landslide susceptibility using geo-technical properties of soil. In: Semi-quantitative approaches for landslide assessment and prediction. Springer Natural Hazards, New York, pp 167–189. doi:10.1007/978-981-287-146-6_6

    Google Scholar 

  • Montrasio L (2000). Stability analysis of soil slip. In: Brebbia CA (ed) International conference risk analysis II. Wit Press, Southampton, pp 357–366

  • Montrasio L, Valentino R (2008) A model for triggering mechanisms of shallow landslides. Nat Hazards Earth Syst Sci 8:1149–1159. doi:10.5194/nhess-8-1149-2008

    Article  Google Scholar 

  • Montrasio L, Valentino R, Losi GL (2011) Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale. Nat Hazards Earth Syst Sci 11(7):1927–1947. doi:10.5194/nhess-11-1927-2011

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522. doi:10.1029/WR012i003p00513

    Article  Google Scholar 

  • Ng CWW, Shi Q (1998) A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Comput Geotech 22(1):1–28

    Article  Google Scholar 

  • Park DW, Nikhil NV, Lee SR (2013) Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Nat Hazards Earth Syst Sci 13(1):2833–2849. doi:10.5194/nhess-13-2833-2013

    Article  Google Scholar 

  • Park DW, Lee SR, Vasu NN, Kang SH, Park JY (2016) Coupled model for simulation of landslides and debris flows at a local scale. Nat Hazards 81(3):1653–1682. doi:10.1007/s11069-016-2150-2

    Article  Google Scholar 

  • Rahardjo H, Li XW, Toll DG, Leong EC (2001) The effect of antecedent rainfall on slope stability. Geotech Geol Eng 19(3):371–399. doi:10.1023/A:1013129725263

    Article  Google Scholar 

  • Rahardjo H, Ong TH, Rezaur RB, Leong EC (2007) Factors controlling instability of homogeneous soil slopes under rainfall. J Geotech Geoenviron Eng 133(12):1532–1543

    Article  Google Scholar 

  • Rahardjo H, Leong EC, Rezaur RB (2008) Effect of antecedent rainfall on pore-water pressure distribution characteristics in residual soil slopes under tropical rainfall. Hydrol Process 22(4):506–523. doi:10.1002/hyp.6880

    Article  Google Scholar 

  • Raia S, Alvioli M, Rossi M, Baum RL, Godt JW, Guzzetti F (2014) Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geosci Model Dev 7:495–514. doi:10.5194/gmdd-6-1367-2013

    Article  Google Scholar 

  • Rigon R, Bertoldi G, Over TM (2006) GEOtop: a distributed hydrological model with coupled water and energy budgets. J Hydrometeorol 7(3):371–388. doi:10.1175/JHM497.1

    Article  Google Scholar 

  • Sabastein KYF (2003). Stochastic analysis of coupled surface and subsurface flow model in steep slopes for slope stability analysis. Department of Civil Engineering. Hong Kong, Hong Kong University of Science and Technology. MsC, pp 1–242

  • Salciarini D, Godt J, Savage WZ, Baum RL, Conversini P (2008) Modeling landslide recurrence in Seattle, Washington, USA. Eng Geol 102(3–4):227–237. doi:10.1016/j.enggeo.2008.03.013

    Article  Google Scholar 

  • Salciarini D, Tamagnini C, Conversini P, Rapinesi S (2012) Spatially distributed rainfall thresholds for the initiation of shallow landslides. Nat Hazards 61(1):229–245. doi:10.1007/s11069-011-9739-2

    Article  Google Scholar 

  • Schmidt KM, Roering JJ, Stock JD, Dietrich WE, Montgomery DR, Schaub T (2001) The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can Geotech 38(5):995–1024. doi:10.1139/t01-031

    Article  Google Scholar 

  • Segoni S, Rossi G, Catani F (2012) Improving basin scale shallow landslide modelling using reliable soil thickness maps. Nat Hazards 61(1):85–101. doi:10.1007/s11069-011-9770-3

    Article  Google Scholar 

  • Simoni S, Zanotti F, Giacomo B, Rigon R (2008) Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS. Hydrol Process 22(4):532–545. doi:10.1002/hyp.6886

    Article  Google Scholar 

  • Song YS, Kim KS (2014) Geotechnical properties of landslide sites in Korea with differing geology. In: Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment, Vol 2. Springer, Switzerland, pp 87–92. doi:10.1007/978-3-319-05050-8_15

    Chapter  Google Scholar 

  • Srivastava R, Yeh TCJ (1991) Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resour Res 27(5):753–762. doi:10.1029/90WR02772

    Article  Google Scholar 

  • Tesfa TK, Tarboton DG, Chandler DG, McNamara JP (2009) Modeling soil depth from topographic and land cover attributes. Water Resour Res 45(10):1–16. doi:10.1029/2008WR007474

    Article  Google Scholar 

  • Troch PA, Paniconi C, Emiel van Loon E (2003) Hillslope-storage Boussinesq model for subsurface flow and variable source areas along complex hillslopes: 1. Formulation and characteristic response. Water Resour Res 39(11):1–10. doi:10.1029/2002WR001728

    Article  Google Scholar 

  • Tsai TL, Wang JK (2010) Examination of influences of rainfall patterns on shallow landslides due to dissipation of matric suction. Environ Earth Sci 63(1):65–75. doi:10.1007/s12665-010-0669-1

    Article  Google Scholar 

  • Tsaparas I, Rahardjo H, Toll DG, Leong EC (2002) Controlling parameters for rainfall-induced landslides. Comput Geotech 29(1):1–27. doi:10.1016/S0266-352X(01)00019-2

    Article  Google Scholar 

  • Valentino R, Meisina C, Montrasio L, Lori L, Zizioli GL (2014) Predictive power evaluation of a physically based model for shallow landslides in the area of Oltrepò Pavese, Northern Italy. Geotech Geol Eng 32(4):783–805. doi:10.1007/s10706-014-9758-3

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Viet TT, Thu TM, Lee GH, Oh S, Van NTH (2015) Effect of extreme rainfall on cut slope stability: case study in Yen Bai City, Viet Nam. J Korean Geoenviron Soc 16(4):23–32. doi:10.14481/jkges.2015.16.4.23

    Article  Google Scholar 

  • Viet TT, Lee GH, Thu TM, An H (2016) Effect of digital elevation model resolution on shallow landslide modeling using TRIGRS. Nat Hazards Rev 18(2):1–12. doi:10.1061/(ASCE)NH.1527-6996.0000233

    Google Scholar 

  • Yuan CC, Chae YK, Paik J, Kim G, Lee SW, Seo HS (2005) Analysis of time-varying rainfall infiltration induced landslide. Environ Geol 48(4):466–479. doi:10.1007/s00254-005-1289-z

    Article  Google Scholar 

  • Yune CY, Chae YK, Paik J, Kim G, Lee SW, Seo HS (2013) Debris flow in metropolitan area—2011 Seoul debris flow. J Mt Sci 10(2):199–206. doi:10.1007/s11629-013-2518-7

    Article  Google Scholar 

  • Zezere JL, Trigo RM, Trigo IF (2005) Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): assessment of relationships with the North Atlantic Oscillation. Nat Hazards Earth Syst Sci 5(3):331–344. doi:10.5194/nhess-5-331-2005

    Article  Google Scholar 

  • Zhang H, Zhang F, Shen K, Yuan M (2015). A surface and subsurface model for the simulation of rainfall infiltration in slopes. In: International symposium on geohazards and geomechanics (ISGG2015). IOP Publishing, Coventry, UK; vol 26, 1–16. doi: 10.1088/1755-1315/26/1/012025

Download references

Acknowledgements

This research is supported by the Korea Ministry of Environment (MOE) as “GAIA Program-2014000540005.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giha Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T., Lee, G., An, H. et al. Comparing the performance of TRIGRS and TiVaSS in spatial and temporal prediction of rainfall-induced shallow landslides. Environ Earth Sci 76, 315 (2017). https://doi.org/10.1007/s12665-017-6635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6635-4

Keywords

Navigation