Skip to main content

Advertisement

Log in

Summer rainstorm associated with a debris flow in the Amarilla gully affecting the international Agua Negra Pass (30°20′S), Argentina

Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Central-West region of Argentina was seriously affected by a series of convective summer storms on January–February of 2013 generating many debris flows and rockfall in the Central Andes mountain regions. In particular, the unreported 8th February event caused the sad death of a 10-year-old child being completely ignored by society and local authorities. Despite this, meteorological conditions associated with this event and further episodes were rarely measured and determined mainly due to scarce meteorological stations in Andean mountain areas. In this paper, meteorological data from CMORPH algorithm and measurements of surrounding gauges were analyzed for estimating the triggering precipitation value of this event. As well, the particular debris flow channeled into the main branch of the Amarilla gully in the Agua Negra valley was geomorphologically described. The amount of precipitation associated with this debris flow was 5.5 and 13.2 mm accumulated previous to the event. This violent debris flow was generated in a talus zone in a periglacial environment located just below a covered rock glacier. However, the influence of the permafrost thawing in this process is not feasible. The altitude of the 0 °C isotherm was lower during the previous days of the event, and no monitoring on permafrost is available for this area. The volume of removed mass was estimated in 5 × 104 m3, and the mean velocity was 35 km/h. Boulders of 4 m diameter were found in the source area, while the deposit is up to 75% sandy with clasts that hardly exceed 10 cm in the alluvial fan distal part. Herein the main objective is to advice about the probable catastrophic impact of similar events in the future. These findings could be useful for hazard remediation, mitigation, and prevention plans for the Agua Negra international pass under construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Brea JD, Spalletti P, Amores G (2013) The 2006 and 2009 landslide and flood events in the Tartagal River Basin (Argentina). In: Landslide science and practice: risk assessment, management and mitigation. 2nd World Landslide Forum, WLF 2011, Rome, Italy, 3–9 October 2011. Code 104240. 6:341-347

  • Brunetti MT, Luino F, Vennari C, Peruccacci S, Biddoccu M, Valigi D, Luciani S, Cirio CG, Rossi M, Nigrelli G, Ardizzone F, Di Palma M, Guzzetti F (2013) Rainfall thresholds for possible occurrence of shallow landslides and debris flows in Italy. In: Schneuwly-Bollschweiler M, Stoffel M, Rudolf-Miklau F (eds) Dating torrential processes on fans and cones. Springer, London, pp 327–339

    Chapter  Google Scholar 

  • Cannon SH, Ellen SD (1985) Rainfall conditions for abundant debris avalanches, San Francisco Bay region, California. Calif Geol 38(12):267–272

    Google Scholar 

  • Chen S, Hong Y, Cao Q, Kirstetter PE, Gourley JJ, Qi Youcun, Zhang Jian, Howard K, Hub J, Wang J (2013) Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: are remote-sensing products ready for gauge denial scenario of extreme events? J Hydrol 506:4–13

    Article  Google Scholar 

  • Coe JA, Michael JA, Crovelli RA, Savage WZ, Laprade WT, Nashem WT (2004) Probabilistic assessment of precipitation-triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environ Eng Geosci 2:103–122

    Article  Google Scholar 

  • Corominas J, Van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervas J, Smith JT (2013) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ. doi:10.1007/s10064-013-0538-8

    Google Scholar 

  • Croce FA, Milana JP (2002) Internal structure and behavior of a rock glacier in the arid Andes of Argentina. Permafrost Periglac Process 13(4):289–299

    Article  Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modeling of shallow landslides triggered by intense rainfall. Nat Hazards Earth Syst Sci 3:81–93

    Article  Google Scholar 

  • D’Odorico P, Fagherazzi S, Rigon R (2005) Potential for landsliding: dependence on hyetograph characteristics. J Geophys Res 110:F01007. doi:10.1029/2004JF000127

    Google Scholar 

  • Esper Angillieri MY (2011) Inventario de procesos de remoción en masa de un sector del departamento Iglesia, San Juan. Revista de la Asociación Geológica Argentina 68(2):225–232

    Google Scholar 

  • Kjelstad KJF (2011) Regional rainfall thresholds using global high resolution satellite precipitation estimates. A case study of landslides in Bangladesh. Master thesis, Faculty of Mathematics and Natural Sciences, University of Oslo. http://www.duo.uio.no

  • Fischer L, Kaab A, Huggel C, Noetzli J (2006) Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. Nat Hazards Earth Syst Sci 6:761–772

    Article  Google Scholar 

  • Frattini P, Crosta GB, Fusi N, Negro PD (2004) Shallow landslides in pyroclastic soil: a distributed modeling approach for hazard assessment. Eng Geol 73:277–295

    Article  Google Scholar 

  • Gabet EJ, Burbank DW, Putkonen JK, Pratt-Sitaula BA, Ojhac T (2004) Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology 63:131–143

    Article  Google Scholar 

  • Glade T (2000) Modelling landslide-triggering rainfalls in different regions of New Zealand—the soil water status model. Geomorphol NE 122:63–84

    Google Scholar 

  • Govi M, Mortara G, Sorzana P (1985) Eventi idrologici e frane. Geol Appl Idrogeol 20(2):395–401

    Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267

    Article  Google Scholar 

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17

    Article  Google Scholar 

  • Heredia N, Rodriguez Fernandez LR, Gallastegui G, Buisquets P, Colombo F (2002) Geological setting of Argentine Frontal Cordillera in the flat-slab segment (30°00′–31°30′S latitude). J S Am Earth Sci 15:79–99

    Article  Google Scholar 

  • Hirpa FA, Gebremichael M, Hopson T (2010) Evaluation of high-resolution satellite precipitation products over very complex terrain in Ethiopia. J Appl Meteorol Climatol. doi:10.1175/2009JAMC2298.1

    Google Scholar 

  • Huggel C (2008) Recent extreme slope failures in glacial environments: effects of thermal perturbation. Quat Sci Rev 30:1–12

    Google Scholar 

  • Hungr O (2005) Classification and terminology. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena, praxis. Springer, Berlin

    Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910

    Article  Google Scholar 

  • Jibson RW (1989) Debris flow in southern Porto Rico. In: Schultz, Jibson (eds) Landslide processes of the eastern United States and Puerto Rico. Geological Society of American Special Paper 236:29–55

  • Johnson AM, Rodine JR (1984) Debris flow. In: Brundsen D, Prior DB (eds) Slope instability. Wiley, Hoboken, p 620

    Google Scholar 

  • Joyce RJ, Janowiak JE, Arkin PA, Xie P (2004) CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydromet 5:487–503

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Keim RF, Skaugset AE (2003) Modelling effects of forest canopies on slope stability. Hydrol Processes 17:1457–1467

    Article  Google Scholar 

  • Lan HX, Lee CF, Zhou CH, Martin CD (2005) Dynamic characteristics analysis of shallow landslides in response to rainfall event using GIS. Environ Geol 47:254–267

    Article  Google Scholar 

  • Leiva JC (1999) Recent fluctuations of the Argentinean glaciers. Glob Planet Change 22(1–4):169–177

    Article  Google Scholar 

  • Marcato G, Bossi G, Rivelli F, Borgatti L (2012) Debris flood hazard documentation and mitigation on the Tilcara alluvial fan (Quebrada de Humahuaca, Jujuy province, North–West Argentina). Nat Hazards Earth Syst Sci 12(6):1873–1882

    Article  Google Scholar 

  • Milana JP (2015) Molards and their relation to landslides involving permafrost failure. Permafr Periglac Process. doi:10.1002/ppp.1878

    Google Scholar 

  • Milana JP, Maturano A (1999) Application of radio echo sounding at the arid Andes of Argentina: the Agua Negra Glacier. Glob Planet Change 22(1–4):179–191. doi:10.1016/S0921-8181(99)00035-1

    Article  Google Scholar 

  • Minetti JL, Barbieri P, Poblete AG y Sierra E (1986) El Régimen de precipitaciones de la provincia de San Juan y su entorno. Informe Técnico Nro. 8 CIRSAJ, CONICET, IPG-HOEA, p 200

  • Moreiras SM (2005) Climatic effect of ENSO associated with landslide occurrence in the Central Andes, Mendoza province,Argentina. Landslides 2(1):53–59

    Article  Google Scholar 

  • Moreiras SM (2006) Frequency of debris flows and rockfall along the Mendoza river valley (Central Andes), Argentina. Quat Int 158:110–121

    Article  Google Scholar 

  • Moreiras SM (2009) Análisis estadístico probabilístico de las variables que condicionan la inestabilidad de las laderas en los valles de los ríos Las Cuevas y Mendoza. Revista de la Asociación Geológica Argentina 65(4):780–790

    Google Scholar 

  • Moreiras SM, Sepúlveda SA (2013) The high social and economic impact 2013 summer debris flow events in central Chile and Argentina. Bollettino di Geofisica Teorica ed Applicat 54(2):181–184

    Google Scholar 

  • Polanski J (1978) El Carbonífero y Pérmico de la Argentina, Sec edn. Eudeba, Buenos Aires, p 216

    Google Scholar 

  • Santos JR, Norte F, Moreiras SM, Araneo D, Simonelli S (2015) Predicción de episodios de precipitación que ocasionan aludes en el área montañosa del noroeste de la Provincia de Mendoza, Argentina (Precipitation events prediction that causes debris flow and landslides over mountainous area on norwest region of Mendoza province, Argentina). GEOACTA 40(1):65–75

    Google Scholar 

  • Schaefer JT (1990) The critical success index as an indicator of warning skill. Weather Forecast 5:570–575. doi:10.1175/1520-0434(1990)005<0570:tcsiaa>2.0.co;2

    Article  Google Scholar 

  • Schrott L (1994) Solar radiation as a controlling factor in a subtropical, semi arid high Andes geological system—Agua Negra, San Juan. Argentina Heidelberger Geographische Arbeiten 94:199

    Google Scholar 

  • Schrott L (1996) Some geomorphological-hydrological aspects of rock glaciers in the Andes (San Juan, Argentina). Zeitschrift fur Geomorphologie 104:161–173

    Google Scholar 

  • SEGEMAR (2000) Hoja Geológica Rodeo (preliminar). Buenos Aires (Unpublished)

  • Sepúlveda SA, Padilla C (2008) Rain-induced debris and mud flow triggering factors assessment in the Santiago Cordilleran foothills, Central Chile. Nat Hazards 47:201–215

    Article  Google Scholar 

  • Sepúlveda SA, Rebolledo S, Vargas G (2006) Recent catastrophic debris flows in Chile: geological hazard. Climatic relationships and human response. Quat Int 158:83–95

    Article  Google Scholar 

  • Sepúlveda SA, Moreiras SM, Lara M, Alfaro A (2015) Debris flows in the Andean ranges of central Chile and Argentina triggered by 2013 summer storms: characteristics and consequences. Landslides 12(1):115–133. doi:10.1007/s10346-014-0539-0

    Article  Google Scholar 

  • Su F, Hong Y, Lettenmaier DP (2008) Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and its utility in hydrologic prediction in the La Plata Basin. J Hydrometeorol. doi:10.1175/2007JHM944.1

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides: analysis and control, transportation research. Board National Academy of Sciences, Washington

    Google Scholar 

  • Wieczorek GF, Morgan BA, Campbell RH (2000) Debris flow hazards in the Blue Bridge of central Virginia. Environ Eng Geosci 1(1):11–27

    Google Scholar 

  • Wolf J (2015) Geomorphological evidence of former glaciations and recent permafrost distribution at the Paso de Agua Negra, Argentina. Master thesis, University of Natural Resources and Life Sciences, Vienna, Austria

  • WP/WLI (1993) Multilingual landslide glossary. Bitech Publishers, Richmond, p 59

    Google Scholar 

Download references

Acknowledgements

This research work was supported by PIP 112201101-00484 and PIP 11220150100191CO both leader by Moreiras. Natural hazards studies are carried out in the framework of ANLAC (Amenazas Naturales en Los Andes Centrales) Program focus on evaluation of impacts of Natural Hazards of the Central Andes. Results are part of Ph.D. of Vergara at UNRN and master theses of Wolf and Tutzer at Boku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Lauro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lauro, C., Moreiras, S.M., Junquera, S. et al. Summer rainstorm associated with a debris flow in the Amarilla gully affecting the international Agua Negra Pass (30°20′S), Argentina. Environ Earth Sci 76, 213 (2017). https://doi.org/10.1007/s12665-017-6530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6530-z

Keywords

Navigation