Skip to main content
Log in

Response of the soil hydrothermal process to difference underlying conditions in the Beiluhe permafrost region

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The changes in hydrothermal dynamics under different underlying conditions are the important aspect of hydrological and ecological processes, and engineering stability in permafrost regions. This study monitored the temperature and moisture of soil at a depth range from 0 to 80 cm beneath the barren, alpine steppe, and alpine meadow at the Beiluhe Basin on the Qinghai–Tibet Plateau. The freezing and thawing process and hydrothermal dynamic changes were analyzed within the test range. In a year, the freezing and thawing process controlled the pattern of hydrothermal changes. The properties of ground surface affected the hydrothermal change process in various stages. In the freeze stages, moisture and the absolute value of ground temperature showed an exponential relationship. In the thawing stages, moisture may increase, decrease, or remain stable in different temperature ranges. This process is affected by precipitation, solar radiation, and so on. At a 0–30 cm depth range, moisture increased linearly with precipitation. At 0–20 cm depth range, precipitation had a significant effect on the ground temperature changes. With the same rainfall condition, the decline of ground temperature corresponds with solar radiation flux. Results confirmed that ground properties were important factors that control the soil moisture and temperature change in the permafrost region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Chang J, WangGX LiCJ, Mao TX (2015) Seasonal dynamics of suprapermafrost groundwater and its response to the freeing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau. Sci China Ser D 58(5):727–738. doi:10.1007/s11430-014-5009-y

    Article  Google Scholar 

  • Chen H, Zhu QA, Wu N, Wang YF, Peng CH (2011) Delayed spring phenology on the Tibetan Plateau may also be attributable to other factors than winter and spring warming. Proc Natl Acad Sci USA (PNAS) 108(19):E93. doi:10.1073/pnas.1100091108

    Article  Google Scholar 

  • Cheng GD, Wu TH(2007) Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J Geophys Res112:F02S03. doi: 10.1029/2006JF000631

  • Cheng GD, Jin HJ (2013) Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol J 21:5–23. doi:10.1007/s10040-012-0927-2

    Article  Google Scholar 

  • Gao QZ, Guo YQ, Xue HM, Hasbagen G, Li Y, Wan YF (2016) Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci Total Environ 554–555:34–41. doi:10.1016/j.scitotenv.2016.02.131

    Article  Google Scholar 

  • Gao ZQ (2005) Determination of soil heat flux in a Tibetan short-grass prairie. Bound-Lay Meteorol 114:165–178. doi:10.1007/s10546-004-8661-5

    Article  Google Scholar 

  • Lachenbruch AH (1994) Permafrost, the active layer and changing climate.Open-File report 94-694, Washington DC

  • Liang SH, Wan L, Li ZM, Cao WB (2007) The effect of permafrost on alpine vegetation in the source regions of the Yellow River. J Glaciol Geocryol 29(1):45–52 (in Chinese with English abstract)

    Google Scholar 

  • Li R, Zhao L, Ding YJ, Wu TH, Du EJ, Liu GY (2013) Study on soil thermodynamic characteristic at different underling surface in northern Qinghai-Tibet Plateau. Acta Energiac Solaris Sin 34(6):1076–1084 (in Chinese with English abstract)

    Google Scholar 

  • Li R, Zhao L, Ding YJ, Jiao KQ, Wang YX, Qiao YP (2010) A study on soil thermodynamic characteristics of active layer in northern Tibetan Plateau. Chin J Geophy 53(5):1060–1072 (in Chinese with English abstract)

    Article  Google Scholar 

  • Liu YZ, Wu QB, Zhang JM, Sheng Y (2002) Deformation of highway roadbed in permafrost regions of the Tibetan Plateau. J Glaciol 24(1):10–14 (in Chinese with English abstract)

    Google Scholar 

  • Luo DL, Jin HJ, Marchenko S, Romanovsky V (2014) Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model. Sci China Ser D 57:1834–1845. doi:10.1007/s11430-014-4852-1

    Article  Google Scholar 

  • Nicolsky DJ, Romanovsky VE, Alexeev VA, Lawrence DM (2007) Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophys Res Lett 34(8):162–179. doi:10.1029/2007GL029525

    Article  Google Scholar 

  • Niu L, Ye BS, Li J, Sheng Y (2011) Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China. Sci China Ser D 54(4):615–624. doi:10.1007/s11430-010-4073-1

    Article  Google Scholar 

  • Peters-Lidard CD, Blackburn E, Liang X, Wood EF (1998) The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J Atmos Sci 55(7):1209–1224. doi:10.1175/1520-0469(1998)055<1209:TEOSTC>2.0.CO;2

    Article  Google Scholar 

  • Qian ZY, Hu ZY, Du P, Zhang YW (2005) Energy transfer of near surface layer and micrometeorology characteristics in Beiluhe Area of Qinghai-Xizang Plateau. Plateau Meteorol 24(1):43–48 (in Chinese with English abstract)

    Google Scholar 

  • Wang GX, Liu GS, Li CJ, Yan Y (2012) The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region. Agric For Meteorol 162:44–57. doi:10.1016/j.agrformet.2012.04.006

    Google Scholar 

  • Wang SJ, Huo M, Zou WJ (2004) Subgrade failure of Qinghai-Tibet Highway in permafrost area. Highway 5:22–26 (in Chinese with English abstract)

    Google Scholar 

  • Xu XZ, Wang JC, Zhang LX (2010) Permafrost physics. Science Press, Beijing, pp 153–167

    Google Scholar 

  • Yi SH, McGuire AD, Harden J (2009) Interactions between soil thermal and hydrological dynamics in the response of Alaska ecosystems to fire disturbance. J Geophys Res Biogeosci 114(G2):92–103. doi:10.1029/2008JG000841

    Article  Google Scholar 

  • Yi SH, Zhou ZY (2011) Increasing contamination might have delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci USA (PNAS) 108(19):E94. doi:10.1073/pnas.1100394108

    Article  Google Scholar 

  • Yu QH, Liu YZ, Tong CJ (2002) Analysis of the subgrade deformation of the Qinghai-Tibetan Highway. J glaciol geocryol 24(5):623–627 (in Chinese with English abstract)

    Google Scholar 

  • Zhang GL, Zhang YJ, Dong JW, Xiao XM (2013) Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc Natl Acad Sci USA (PNAS) 110(11):4309–4314. doi:10.1073/pnas.1210423110

    Article  Google Scholar 

  • Zhang S, Teng JD, He ZY (2016) Canopy effect caused by vapor transfer in covered freezing soils. Géotechnique. doi:10.1680/jgeot.16.P.016

    Google Scholar 

  • Zhang YS, Ohata T, Kang ES (2003a) Observation and estimation of evaporation from the ground surface of the cryosphere in eastern Asia. Hydrol Process 17:1135–1147. doi:10.1002/hyp.1183

    Article  Google Scholar 

  • Zhang YS, Ohata T, Kadota T (2003b) Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau. J Hydrol 283:41–56. doi:10.1016/S0022-1694(03)00240-3

    Article  Google Scholar 

  • Zhang ZQ (2012) Study on the mechanism of asphalt pavement’s thermal effects in permafrost regions. Thesis of graduate school of Chinese Academy of Sciences, Lanzhou, China

  • Zhao L, Wu QB, Marchenko SS, Sharkhuu N (2010) Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafr Periglac 21:198–207. doi:10.1002/ppp.688

    Article  Google Scholar 

  • Zhuang Q, Melillo J, Kicklighter D, Prinn RG, McGuire AD, Steudler PA, Felzer BS, Hu S (2004) Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Glob Biogeochem Cycles 18(3):1279–1290. doi:10.1029/2004GB002239

    Article  Google Scholar 

  • Zhou YW, Guo DX, Qiu GQ, Cheng GD (2000) Geocryology in China. Science Press, Beijing, pp 435–478

    Google Scholar 

Download references

Acknowledgements

We would like to express our sincerest gratitude to the anonymous reviewers for providing us with constructive and insightful comments and suggestions. We also like to thank the Natural Science Foundation of China (41301071 and 41330634), the Foundation for Excellent Youth Scholars of CAREERI, and the Independent Research Project of State Key Laboratory of Frozen Soil Engineering (SKLFSE-ZQ-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqiong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wu, Q., Gao, S. et al. Response of the soil hydrothermal process to difference underlying conditions in the Beiluhe permafrost region. Environ Earth Sci 76, 194 (2017). https://doi.org/10.1007/s12665-017-6518-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6518-8

Keywords

Navigation