Skip to main content
Log in

Major factors influencing boron adsorption in sediments—a case study of modern sediments in Qinghai Lake

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Because the boron (B) concentration in water has an apparent positive correlation with salinity, the B content adsorbed in sediments is often regarded as an important indicator to reconstruct the water salinity in a sedimentary environment. The premise of the quantitative reconstruction of paleosalinity is that the B uptake in sediments is proportional to the B concentration in water; however, the study showed that there is no direct relationship. The B absorption in sediments can be affected by both the content of the clay minerals and the total organic carbon content. The data from testing modern sediments and water samples in the Qinghai Lake show that a higher content in clay minerals is beneficial for B adsorption. Furthermore, the organic carbon from halophiles has a strong effect on the enrichment of B. Therefore, the organic carbon content in sediments should be considered when the paleosalinity of water is reconstructed using its B content. It is also thought that the Adams and Couch formulas are not suitable for reconstructing the salinity of water with a high organic carbon content in sediments because they consider only the effect of clay minerals on the adsorbed B without the contribution of organic carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams TD, Haynes JR, Walker CT (1965) Boron in holocene illites of the dovey estuary, wales, and its relationship to palaeosalinity in cyclothems. J Sedimentol 4:189–195

    Article  Google Scholar 

  • Brooks DJ, Dewall AE (1976) Boron concentration in Chesapeake Bay sediments, paleosalinity and baymouth uplift. J Chesap Sci 3:221–224

    Article  Google Scholar 

  • Chinese Academy of Sciences (1979) Comprehensive investigation report of Qinghai Lake. Science Press, Beijing, pp 1–268 (in Chinese)

    Google Scholar 

  • Couch EL (1971) Calculation of paleosalinities from boron and clay mineral data. J AAPG 55(10):1829–1837

    Google Scholar 

  • Cui CZ, Ma L, Shi J, Lin KF, Luo QS, Liu YD (2014) Metabolic pathway for degradation of anthracene by halophilic Martelella sp. AD-3. J Int Biodeterior Biodegrad 89:67–73

    Article  Google Scholar 

  • Dong H, Song Y (2011) Shrinkage history of Lake Qinghai and causes during the last 52 years. In: Collected papers of international symposium on water resource and environmental protection (ISWREP), pp 446-449

  • Eliana L, Tassi Pedron F, Barbafieri M (2011) Evaluating the absorption of boron by plants—a potential tool to remediate contaminated sediments from Cecina River Basin in Italy. J Water Air Soil Pollut 216:275–287

    Article  Google Scholar 

  • Eskenazy G, Delibaltova D, Mincheva E (1994) Geochemistry of boron in Bulgarian coals. Int J Coal Geol 25:93–110

    Article  Google Scholar 

  • Frederickson AF, Reynolds RC (1960) Geochemical method for determining paleosalinity. J Clays Clay Miner 8:203–213

    Article  Google Scholar 

  • Furst MJ (1981) Boron in siliceous materials as a paleosalinity indicator. J Geochim et Cosmochim Acta 45(1):1–13

    Article  Google Scholar 

  • Gao CL, Yu JQ, Zhan DP, Zhang LS, Cheng AY (2009) Formation and distribution characteristics of B resource in salt lakes of Qaidam basin. J J Salt Lake Res 4:6–13 (in Chinese)

    Google Scholar 

  • Goodarzi F, Swaine DJ (1994) The influence of geological factors on the concentration of boron in Australian and Canadian coals. J Chem Geol 118:301–318

    Article  Google Scholar 

  • Holloway MD, Sime LC, Singarayer JS, Tindall JC, Valdes PJ (2016) Reconstructing paleosalinity from δ18O: coupled model simulations of the Last Glacial Maximum, Last Interglacial and Late Holocene. J Quat Sci Rev 131:350–364

    Article  Google Scholar 

  • Hower JC, Ruppert LF, Williams DA (2002) Controls on boron and germanium distribution in the low-sulfur Amos coal bed, Western Kentucky coalfield. J Int J Coal Geol 53:27–42

    Article  Google Scholar 

  • Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushuner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 317–368

    Google Scholar 

  • Lerman A (1966) Boron in clays and estimation of paleosalinities. J Sedimentol 6(4):267–286

    Article  Google Scholar 

  • Li SY, Yu BS, Dong HL (2006) Study on organic matters in the sediments from the bottom of the Qinghai Lake, China. J Pet Geol Exp 28(4):375–379 (in Chinese with English abstract)

    Google Scholar 

  • Li ML, Mo DW, Mao LJ, Sun GP, Zhou KS (2010) Paleosalinity in the Tianluoshan site and the correlation between the Hemudu culture and its environmental background. J Geogr Sci 20(3):441–454

    Article  Google Scholar 

  • Liu YS, Zong KQ, Kelemen PB, Gao S (2008) Geochemistry and magmatichistory of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. J Chem Geol 247:133–153

    Article  Google Scholar 

  • Liu WG, Li XZ, Zhang L (2009) Evaluation of oxygen isotopes in carbonate as an indicator of lake evolution in arid areas: the modem Qinghai Lake, Qinghai–Tibet Plateau. J Chem Geol 268:126–136

    Article  Google Scholar 

  • Rohling EJ (2000) Paleosalinity: confidence limits and future applications. J Mar Geol 163(1):1–11

    Article  Google Scholar 

  • Sampei Y, Matsumoto E, Dettman DL, Tokuoka T, Abe O (2005) Paleosalinity in a brackish lake during the Holocene based on stable oxygen and carbon isotopes of shell carbonate in Nakaumi Lagoon, southwest Japan. J Palaeogeogr Palaeoclimatol Palaeoecol 224(4):352–366

    Article  Google Scholar 

  • Shen GP, Zhu DR, Liu J, Han R, Long QF (2012) Isolation and characteristics of halophile microorganisms from Lake Qinghai. J Lake Sci 24:313–319 (in Chinese with English abstract)

    Article  Google Scholar 

  • Sun JC (1938) Qinghai Lake. J Geol Rev 3:507–517 (in Chinese)

    Google Scholar 

  • Walker CT (1968) Evaluation of boron as a paleosalinity indicator and its application to offshore prospects. J AAPG Bull 52(5):751–766

    Google Scholar 

  • Wang JT (2015) Who says Qinghai Lake will become Lop Nor. N People’s Daily 9:28 (in Chinese)

    Google Scholar 

  • Wang CY, Zheng RC, Liu Z, Liang XW, Li TY, Zhang JW, Li YL (2014) Paleosalinity of Chang 9 reservoir in Longdong area, Ordos Basin and its geological significance. J Acta Sedimentol Sin 32:159–165 (in Chinese with English abstract)

    Google Scholar 

  • Wingard GL, Hudley JW (2012) Application of a weighted-averaging method for determining paleosalinity: a tool for restoration of south Florida’s estuaries. J Estuar Coasts 35(1):262–280

    Article  Google Scholar 

  • Wu JJ, Wang JP, Chen L, Zhao SL, Wang YF (2014) The area change of Buha river estuary delta during the period of 1970–2010. J Salt Lake Res 22(2):8–13 (in Chinese with English abstract)

    Google Scholar 

  • Zhu DR, Liu J, Han R, Shen GP, Yang F, Long QF, Liu DL (2012) Population diversity and phylogeny of halophiles in the Qinghai Lake. J Biodivers Sci 20(4):495–504 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

We thank Jian Wei and Lei Wang from Chengdu University of Technology for sample collection and pretreatment. This work was supported financially by the National Natural Youth Science Foundation of China (Grant no. 41302088). Professor Wenwu Liu and other reviewers are acknowledged for his critical reviews, which led to improvement of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changyong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Lin, S., Wei, Y. et al. Major factors influencing boron adsorption in sediments—a case study of modern sediments in Qinghai Lake. Environ Earth Sci 76, 181 (2017). https://doi.org/10.1007/s12665-017-6507-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6507-y

Keywords

Navigation