Environmental Earth Sciences

, 76:170 | Cite as

Assessing cave internal aerology in understanding carbon dioxide (CO2) dynamics: implications on calcite mass variation on the wall of Lascaux Cave (France)

  • N. HouillonEmail author
  • R. Lastennet
  • A. Denis
  • P. Malaurent
  • S. Minvielle
  • N. Peyraube
Original Article


Carbon dioxide gas is a key component in dissolution and precipitation of carbonates in karst and cave systems. Therefore, characterizing the internal aerology of a cave is essential to obtain the spatiotemporal distribution of temperature and CO2 level. In this research, Lascaux Cave (France), an important adorned cavity, was studied. First, the spatiotemporal distribution of CO2 and temperatures were examined using continuous monitoring at a per minute basis. High-resolution spatial measurements (14 PCO2 locations and 27 locations for temperature) were carried out for a year in the epikarst and the cave (February 2015 to February 2016). The spatiotemporal analysis presents that air and rock temperatures vary for less than a degree Celsius (12.4–12.9 °C). These are controlled by the conduction of the external thermal waves through the overlying calcarenite massif. As a consequence, two seasonal internal aerologic regimes were identified: stratification and convection. These regimes govern the spatiotemporal distribution of the CO2 levels (1.1–3.7%), showing that this parameter is a good natural marker of the internal air movements. Second, a method was proposed to estimate the calcite mass potentially affected by condensation water (dissolution process) and exfiltration water (precipitation process). This method, based on numerical simulations, relies on CO2 and air and rock temperature spatiotemporal distributions in the cave. Third, the method was applied using the case of the left wall of the Hall of the Bulls (one of the most adorned part of the cave). Results showed that the calcite mass, possibly dissolved, varies from 0.0002 to 0.006 g when the mass potentially precipitated is higher (from 0.013 to 0.067 g) depending on the aerologic conditions. This method allows determining which alteration process (e.g., precipitation or dissolution) could eventually lead to the largest variation of calcite on the wall. The results can serve as useful data to the cave experts of the French Ministry of Culture and Communication in terms of Lascaux Cave management policies.


Carbon dioxide Complex monitoring Karst cave aerology Calcium carbonate 



The authors would like to thank the DRAC Aquitaine, Poitou-Charentes and Limousin for funding and supporting this research.


  1. Atkinson TC (1977) Carbon dioxide in the atmosphere of the unsaturated zone: an important control of ground-water hardness in limestone. J Hydrol 35:111–123CrossRefGoogle Scholar
  2. Aujoulat N (2004) Lascaux. Le geste, l’espace et le temps. Seuil, Paris. Collection. Arts rupestres, 274 p, ill. en couleur, pp 271–272Google Scholar
  3. Baldini JU, Baldini LM, McDermott F, Clipson N (2006) Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: evidence from Ballynamintra Cave, Ireland. J Cave Karst Stud 68:4–11Google Scholar
  4. Batiot C (2002) Etude expérimentale du cycle du carbone en régions karstiques. Apport du carbone organique et du carbone minéral à la connaissance hydrogéologique des systèmes. Site expérimental de Vaucluse, Jura, Larzac, Région Nord-Montpelliéraine, Nerja (Espagne). Thèse de Doctorat, Univ. D’Avignon, 247 pGoogle Scholar
  5. Batiot-Guilhe C, Seidel J-L, Jourde H, Hébrard O, Bailly-Comte V (2007) Seasonal variations of CO2 and 222 Rn in a Mediterranean sinkhole-spring (Causse d’Aumelas, SE France). Int J Speleol 36:51–56CrossRefGoogle Scholar
  6. Benavente J, Vadillo I, Carrasco F, Soler A, Liñán C, Moral F (2010) Air carbon dioxide contents in the vadose zone of a Mediterranean karst. Vadose Zone J 9:126. doi: 10.2136/vzj2009.0027 CrossRefGoogle Scholar
  7. Bourges F, Genthon P, Mangin A, D’Hulst D (2006) Microclimates of l’Aven d’Orgnac and other French limestone caves (Chauvet, Esparros, Marsoulas). Int J Climatol 26:1651–1670. doi: 10.1002/joc.1327 CrossRefGoogle Scholar
  8. Bourges F, Genthon P, Genty D, Mangin A, D’Hulst D (2012) Comment on “Carbon uptake by karsts in the Houzhai Basin, southwest China” by Junhua Yan et al. J Geophys Res Biogeosci. doi: 10.1029/2012JG001937 CrossRefGoogle Scholar
  9. Breecker DO (2017) Atmospheric pCO2 control on speleothem stable carbon isotope compositions. Earth and Planet Sci Lett 458:58–68CrossRefGoogle Scholar
  10. Cigna A (2002) Monitoring of caves: conclusions and recommendations. Acta Carsologica 31:175–177Google Scholar
  11. Cuezva S, Fernandez-Cortes A, Benavente D, Serrano-Ortiz P, Kowalski AS, Sanchez-Moral S (2011) Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: role of the surface soil layer. Atmos Environ 45:1418–1427. doi: 10.1016/j.atmosenv.2010.12.023 CrossRefGoogle Scholar
  12. Delluc B, Delluc G (2006) Connaître Lascaux. Editions du Sud-Ouest, 77 pGoogle Scholar
  13. Denis A (2005) Identification of functional relationships between atmospheric pressure and CO2 in the cave of Lascaux using the concept of entropy of curves. Geophys Res Lett. doi: 10.1029/2004GL022226 CrossRefGoogle Scholar
  14. Dreybrodt W, Scholz D (2011) Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: from soil water to speleothem calcite. Geochim Cosmochim Acta 75:734–752. doi: 10.1016/j.gca.2010.11.002 CrossRefGoogle Scholar
  15. Ek C (1981) Mesures du CO2 dans l’air des grottes: comparaison Québec-Belgique. In: International Union of Speleology (ed) 8th international congress of speleology, Bowling Green (Kentucky). International Union of Speleology, pp 672–673Google Scholar
  16. Ek C, Gewelt M (1985) Carbon dioxide in cave atmospheres. New results in Belgium and comparison with some other countries. Earth Surf Process Landf 10:173–187CrossRefGoogle Scholar
  17. Fernandez PL, Gutierrez I, Quindos LS, Soto J, Villar E (1986) Natural ventilation of the paintings room in the altamira cave. Nature 321:586–587CrossRefGoogle Scholar
  18. Fernandez-Cortes A, Cuezva S, Garcia-Anton E, Alvarez-Gallego M, Pla C, Benavente D, Cañaveras JC, Calaforra JM, Mattey DP, Sanchez-Moral S (2015) Changes in the storage and sink of carbon dioxide in subsurface atmospheres controlled by climate-driven processes: the case of the Ojo Guareña karst system. Environ Earth Sci 74:7715–7730. doi: 10.1007/s12665-015-4710-2 CrossRefGoogle Scholar
  19. Garcia-Anton E, Cuezva S, Fernandez-Cortes A, Benavente D, Sanchez-Moral S (2014) Main drivers of diffusive and advective processes of CO2-gas exchange between a shallow vadose zone and the atmosphere. Int J Greenh Gas Control 21:113–129. doi: 10.1016/j.ijggc.2013.12.006 CrossRefGoogle Scholar
  20. James JM (1977) Carbon dioxide in cave atmosphere. Trans Br Cave Res Assoc 4:417–429Google Scholar
  21. Kaufmann G, Dreybrodt W (2007) Calcite dissolution kinetics in the system CaCO3-H2O-CO2 at high undersaturation. Geochim Cosmochim Acta 71:1398–1410CrossRefGoogle Scholar
  22. Kowalczk A (2009) High resolution microclimate study of Hollow Ridge Cave: Relationships between cave meteorology, air chemistry, and hydrology and the impact on speleothem deposition. Thesis, Florida State UniversityGoogle Scholar
  23. Kowalczk AJ, Froelich PN (2010) Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breathe? Earth Planet Sci Lett 289:209–219. doi: 10.1016/j.epsl.2009.11.010 CrossRefGoogle Scholar
  24. Kowalski AS, Serrano-Ortiz P, Janssens IA, Sanchez-Moral S, Cuezva S, Domingo F, Were A, Alados-Arboledas L (2008) Can flux tower research neglect geochemical CO2 exchange? Agric For Meteorol 148:1045–1054CrossRefGoogle Scholar
  25. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioningmethods. Soil Biol Biochem 38:425–448CrossRefGoogle Scholar
  26. Lacanette D, Malaurent P (2010) La 3D au service de la conservation des grottes ornées, l’exemple de Lascaux et du simulateur Lascaux. In Situ. doi: 10.4000/insitu.6793 CrossRefGoogle Scholar
  27. Lacanette D, Malaurent P, Caltagirone J-P, Brunet J (2007) Étude des transferts de masse et de chaleur dans la grotte de Lascaux: le suivi climatique et le simulateur. Karstologia 50:19–30CrossRefGoogle Scholar
  28. Liñán C, Vadillo I, Carrasco F (2008) Carbon dioxide concentration in air within the Nerja Cave (Malaga, Andalusia, Spain). Int J Speleol 37:2CrossRefGoogle Scholar
  29. Lopez B (2009) Les processus de transfert d’eau et de dioxyde de carbone dans l’épikarst: Aide à la conservation par le développement de nouvelles méthodologies pour l’étude de l’environnement des cavités. Application à la Grotte de Lascaux (Montignac, France). Thèse de Doctorat, UniversitéDe Bordeaux 1, 384 pGoogle Scholar
  30. Mangin A, Bourges F, D’Hulst D (1999) Painted caves conservation: a stability problem in a natural system (the example of the prehistoric cave of Gargas, French Pyrenees). C R Acad Sci Paris 328:295–301Google Scholar
  31. McDonough LK, Iverach CP, Beckmann S, Manefield M, Rau GC, Baker A, Kelly BFJ (2016) Spatial variability of cave-air carbon dioxide and methane concentrations and isotopic compositions in a semi-arid karst environment. Environ Earth Sci 75(8):1–20CrossRefGoogle Scholar
  32. Milanolo S, Gabrovšek F (2009) Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina. Bound Layer Meteorol 131:479–493. doi: 10.1007/s10546-0 CrossRefGoogle Scholar
  33. Minvielle S (2015) Etude de l’infiltration et de ses variations interannuelles en contexte épikarstique pour la caractérisation du fonctionnement des hydrosystèmes karstiques : utilisation de la méthode ISc-PCO2 et des modèles réservoirs. Thèse de Doctorat, Université de Bordeaux, 302 pGoogle Scholar
  34. Minvielle S, Peyraube N, Lastennet R, Denis A (2015) Characterization of the functionality of karstic systems based on the study of the SIc–Pco2 relation. In: Andreo B, Carrasco F, Durán JJ, Jiménez P, LaMoreaux JW (eds) Hydrogeological and environmental investigations in karst systems. Springer, Berlin, pp 19–26CrossRefGoogle Scholar
  35. NOAA ESRL Global Monitoring Division (2016) Mace Head site, Ireland. Accessed 16 Nov 2016
  36. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99-4259, 312 pGoogle Scholar
  37. Peyraube N, Lastennet R, Denis A (2012) Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the relationship. J Hydrol 430–431:13–24. doi: 10.1016/j.jhydrol.2012.01.033 CrossRefGoogle Scholar
  38. Peyraube N, Lastennet R, Villanueva JD, Houillon N, Malaurent P, Denis A (2016) Effect of diurnal and seasonal temperature variation on Cussac cave ventilation using CO2 assessment. Theor Appl Climatol. doi: 10.1007/s00704-016-1824-8 CrossRefGoogle Scholar
  39. Renault P (1968) Sur la distinction de plusieurs régions karstiques en raison de la teneur en anhydride carbonique des atmosphères de grottes. C R Acad Sci Paris 267:2288–2290Google Scholar
  40. Scholz D, Mühlinghaus C, Mangini A (2009) Modelling δ13C and δ18O in the solution layer on stalagmite surfaces. Geochimica et Cosmochimica Acta 73(9):2592–2602CrossRefGoogle Scholar
  41. Spötl C, Fairchild IJ, Tooth AF (2005) Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim Cosmochim Acta 69:2451–2468. doi: 10.1016/j.gca.2004.12.009 CrossRefGoogle Scholar
  42. Troester JW, White W (1984) Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere. WRR 20:153–156CrossRefGoogle Scholar
  43. Vieten R, Winter A, Warken SF, Schröder-Ritzrau A, Miller TE, Scholz D (2016) Seasonal temperature variations controlling cave ventilation processes in Cueva Larga, Puerto Rico. Int J Speleol 45(3):7CrossRefGoogle Scholar
  44. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford University Press, New YorkGoogle Scholar
  45. Williams PW (1983) The role of the subcutaneous zone in karst hydrology. J Hydrol 61(1):45–67CrossRefGoogle Scholar
  46. Wood WW (1985) Origin of caves and other solution openings in the unsaturated (vadose) zone of carbonate rocks: a model for CO2 generation. Geology 13:822–824CrossRefGoogle Scholar
  47. Wood WW, Petraitis MJ (1984) Origin and distribution of carbon dioxide in the unsaturated zone of the southern high plains. Water Resour Res 20:1193–1208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratory I2M-GCE (UMR 5295)University of BordeauxPessac CédexFrance

Personalised recommendations