Skip to main content

Advertisement

Log in

Hydrochemical characteristics of groundwater and surface water for domestic and irrigation purposes in Vea catchment, Northern Ghana

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Vea catchment, mainly underlain by crystalline basement rocks, is located in Northern Ghana. Hydrogeochemical studies were carried out in this area with the objective of identifying the geochemical processes influencing water quality and suitability of surface and groundwater for agricultural and domestic uses. Sixty-one groundwater and four surface water samples were collected from boreholes, dams and rivers and analysed for Ca2+, Mg2+, Na+, K+, HCO3 , Cl, and SO4 2−, Fetot, PO4 3−, Mntot, NH4 +, NO3 , NO2 . In addition, pH, total dissolved solids, electrical conductivity, total hardness, turbidity, colour, salinity and dissolved oxygen were analysed. Chloro-alkaline indices 1 and 2, and characterization of weathering processes suggest that the chemistry of groundwater is dominated by the interaction between water and rocks. Cation exchange and silicate weathering are the dominant processes controlling the chemical composition of the groundwater in the area studied. Mineral saturation indices indicate the presence of at least three groups of groundwater in the Vea catchment with respect to residence time. The meteoric genesis index suggests that 86% of the water samples belong to the shallow meteoric water percolation type. The findings further suggest that the groundwater and surface water in the basin studied are mainly Ca–Mg–HCO3 water type, regardless of the geology. Compared to the water quality guidelines of WHO, the study results on sodium absorption ratio, sodium percentage, magnesium hazard, permeability index and residual sodium carbonate indicate that groundwater and surface water in the Vea catchment are generally suitable for drinking and irrigation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adongo TA, Kugbe JX, Gbedzi VD (2014) Siltation of the reservoir of Vea irrigation dam in the Bongo District of the upper east region, Ghana. Int J Sci Technol 4:7

    Google Scholar 

  • Aghazadeh N, Mogaddam AA et al (2010) Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh area, Northwest of Iran. J Environ Prot 1:30

    Article  Google Scholar 

  • Alagbe S (2002) Groundwater resources of river Kan Gimi Basin, North-central, Nigeria. Environ Geol 42:404–413. doi:10.1007/s00254-002-0544-9

    Article  Google Scholar 

  • Alam F (2014) Evaluation of hydrogeochemical parameters of groundwater for suitability of domestic and irrigational purposes: a case study from central Ganga Plain, India. Arab J Geosci 7:4121–4131

    Article  Google Scholar 

  • Anku YS, Banoeng-Yakubo B, Asiedu DK, Yidana SM (2009) Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana. Environ Geol 58:989–997. doi:10.1007/s00254-008-1578-4

    Article  Google Scholar 

  • Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environ Geol 33:13–24

    Article  Google Scholar 

  • Asante FA, Amuakwa-Mensah F (2014) Climate change and variability in Ghana: stocktaking. Climate 3:78–99. doi:10.3390/cli3010078

    Article  Google Scholar 

  • Attoh K, Evans MJ, Bickford ME (2006) Geochemistry of an ultramafic-rodingite rock association in the Paleoproterozoic Dixcove greenstone belt, southwestern Ghana. J Afr Earth Sci 45:333–346. doi:10.1016/j.jafrearsci.2006.03.010

    Article  Google Scholar 

  • Banoeng-Yakubo B, Yidana SM, Anku Y et al (2009) Water quality characterization in some Birimian aquifers of the Birim Basin, Ghana. KSCE J Civ Eng 13:179–187. doi:10.1007/s12205-009-0179-4

    Article  Google Scholar 

  • Batayneh A, Laboun A, Qaisy S et al (2012) Assessing groundwater quality of the shallow alluvial aquifer system in the Midyan Basin, Northwestern Saudi Arabia. Arab Gulf J Sci Res 30:7–13

    Google Scholar 

  • Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: Ain Azel Plain (Algeria). Geoderma 159:390–398. doi:10.1016/j.geoderma.2010.08.016

    Article  Google Scholar 

  • Berg G (1932) Das Vorkommen der chemischen Elemente auf der Erde. Johann Ambrosius Barth, Leipzig

    Google Scholar 

  • Boateng TK, Opoku F, Acquaah SO, Akoto O (2016) Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben Municipality, Ghana. Environ Earth Sci 75:1–14. doi:10.1007/s12665-015-5105-0

    Article  Google Scholar 

  • Cerling TE, Pederson BL, Von Damm KL (1989) Sodium–calcium ion exchange in the weathering of shales: implications for global weathering budgets. Geology 17:552–554

    Article  Google Scholar 

  • Chapman DV (1996) Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring, 2nd edn. WHO, London

    Book  Google Scholar 

  • Clark I (2015) Groundwater geochemistry and isotopes. CRC Press, London

    Book  Google Scholar 

  • Cobbina SJ, Nyame FK, Obiri S (2012) Groundwater quality in the Sahelian Region of Northern Ghana, West Africa. Res J Environ Earth Sci 4:482–491

    Google Scholar 

  • Datta PS, Tyagi SK (1996) Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater flow regime. J Geol Soc India 47:179–188

    Google Scholar 

  • Deutsch WJ, Siegel R (1997) Groundwater geochemistry: fundamentals and applications to contamination. CRC Press, Boca Raton

    Google Scholar 

  • Doneen LD (1964) Notes on water quality in agriculture. In: Water science and engineering paper 4001. Department of Water Sciences and Engineering, University of California, California

  • Edjah AKM, Akiti TT, Osae S et al (2015) Hydrogeochemistry and isotope hydrology of surface water and groundwater systems in the Ellembelle District, Ghana, West Africa. Appl Water Sci. doi:10.1007/s13201-015-0273-3

    Article  Google Scholar 

  • Fianko JR, Nartey VK, Donkor A (2010) The hydrochemistry of groundwater in rural communities within the Tema District, Ghana. Environ Monit Assess 168:441–449. doi:10.1007/s10661-009-1125-0

    Article  Google Scholar 

  • Firempong CK, Nsiah K, Awunyo-Vitor D, Dongsogo J (2013) Soluble fluoride levels in drinking water—a major risk factor of dental fluorosis among children in Bongo community of Ghana. Ghana Med J 47:16–23

    Google Scholar 

  • Fisher RS, Mullican William F (1997) Hydrochemical evolution of sodium–sulfate and sodium–chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 2:4–16

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall Inc., New Jersey

    Google Scholar 

  • Ganyaglo SY, Banoeng-Yakubo B, Osae S et al (2011) Water quality assessment of groundwater in some rock types in parts of the eastern region of Ghana. Environ Earth Sci 62:1055–1069. doi:10.1007/s12665-010-0594-3

    Article  Google Scholar 

  • Ghana Standards Authority (GSA) (2013) Water Quality—Specification for drinking water, 4th edn. Ghana Standards Authority, Accra

    Google Scholar 

  • Ghana Statistical Service (2012) 2010 Population and Housing Census. Ghana Statistical Service, Accra

    Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Gibrilla A, Osae S, Akiti TT et al (2010) Hydrogeochemical and groundwater quality studies in the Northern Part of the Densu River Basin of Ghana. J Water Resour Prot 02:1071–1081. doi:10.4236/jwarp.2010.212126

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, Amsterdam

    Google Scholar 

  • Hirdes W, Konan KG, N’Da D, Okou A, Sea P, Zamble ZB, Davis DW (2007) Geology of the northern portion of the Oboisso Area, Côte d’Ivoire. Sheets 4A, 4B, 4B BIS, 4. Direction de la Géologie, Abidjan, Côte d’Ivoire and Bundesanstalt für Geowissenschaften und Rohstoffe, Hanover

  • Hounslow A (1995) Water quality data: analysis and interpretation. Lewis Publishers, Boca Raton

    Google Scholar 

  • Ifabiyi IP (2008) Depth of hand dug wells and water chemistry: example from Ibadan northeast local government area (LGA), Oyo-state, Nigeria. J Soc Sci 17:261–266

    Google Scholar 

  • Ishaku I, Ahmed A, Abubakar M (2011) Assessment of groundwater quality using chemical indices and GIS mapping in Jada area, Northwestern Nigeria. J Earth Sci Geotech Eng 1:35–60

    Google Scholar 

  • Jagadeshan G, Kalpana L, Elango L (2015) Hydrogeochemistry of high fluoride groundwater in hard rock aquifer in a part of Dharmapuri District, Tamil Nadu, India. Geochem Int 53:554–564. doi:10.1134/S0016702915060038

    Article  Google Scholar 

  • Kaka EA, Akiti TT, Nartey VK et al (2011) Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the southeastern Volta River Basin: Manyakrobo area, Ghana. Elixir Agric 39:4793–4807

    Google Scholar 

  • Karanth KR (1987) Ground water assessment: development and management. Tata McGraw-Hill Education, New Delhi

    Google Scholar 

  • Kesse GO (1985) The mineral and rock resources of Ghana. A.A. Balkema, Rotterdam

    Google Scholar 

  • Kortatsi BK (2006) Hydrochemical characterization of groundwater in the Accra plains of Ghana. Environ Geol 50:299–311. doi:10.1007/s00254-006-0206-4

    Article  Google Scholar 

  • Kortatsi BK (2007) Hydrochemical framework of groundwater in the Ankobra Basin, Ghana. Aquat Geochem 13:41–74. doi:10.1007/s10498-006-9006-4

    Article  Google Scholar 

  • Kumar SK, Logeshkumaran A, Magesh NS et al (2014) Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Appl Water Sci 5:335–343. doi:10.1007/s13201-014-0196-4

    Article  Google Scholar 

  • Kumar PS, Jegathambal P, Nair S, James EJ (2015) Temperature and pH dependent geochemical modeling of fluoride mobilization in the groundwater of a crystalline aquifer in Southern India. J Geochem Explor 156:1–9. doi:10.1016/j.gexplo.2015.04.008

    Article  Google Scholar 

  • Lakshmanan E, Kannan R, Kumar MS (2003) Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram District, Tamil Nadu, India. Environ Geosci 10:157–166

    Article  Google Scholar 

  • Lasm T, De Lasme O, Oga M-S et al (2011) Caractérisation hydrochimique des aquifères fissurés de la région de San-Pedro (Sud-Ouest de la Côte d’Ivoire)

  • Lloyd JW, Heathcote JAA (1985) Natural inorganic hydrochemistry in relation to ground water. Oxford University Press, New York

    Google Scholar 

  • Loh YS, Banoeng-Yakubo B, Yidana SM et al (2012) Hydrochemical characterisation of groundwater in parts of the Volta Basin, Northern Ghana. Ghana Min J 13:24–32

    Google Scholar 

  • Ma H (2016) Major ion chemistry of groundwater in the Sangong River Watershed, Northwestern China. Environ Earth Sci 75:1–17. doi:10.1007/s12665-016-5321-2

    Article  Google Scholar 

  • Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428

    Article  Google Scholar 

  • Middelburg JJ, van der Weijden CH, Woittiez JR (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273

    Article  Google Scholar 

  • Murray RJ (1960) The geology of the Zuanengu 1/2 field sheet. Ghana Geol Surv Bull 25:117

    Google Scholar 

  • Nartey VK, Bam EK, Mahamah M (2012) The geochemistry of some ground and surface water systems in the East Gonja District of Northern Ghana. J Environ Earth Sci 2:10–20

    Google Scholar 

  • Nazzal Y, Ahmed I, Al-Arifi NS et al (2014) A pragmatic approach to study the groundwater quality suitability for domestic and agricultural usage, Saq aquifer, northwest of Saudi Arabia. Environ Monit Assess 186:4655–4667

    Article  Google Scholar 

  • Oberthür T, Vetter U, Davis DW, Amanor JA (1998) Age constraints on gold mineralization and Paleoproterozoic crustal evolution in the Ashanti belt of southern Ghana. Precambrian Res 89:129–143

    Article  Google Scholar 

  • Obuobie E (2008) Estimation of groundwater recharge in the context of future climate change in the White Volta River Basin, West Africa, Paul L.G.Vlek. ZEF, Bonn

  • Odukoya AM, Folorunso AF, Ayolabi EA, Adeniran EA (2013) Groundwater quality and identification of hydrogeochemical processes within University of Lagos, Nigeria. J Water Resour Prot 05:930–940. doi:10.4236/jwarp.2013.510096

    Article  Google Scholar 

  • Okiongbo KS, Douglas RK (2015) Evaluation of major factors influencing the geochemistry of groundwater using graphical and multivariate statistical methods in Yenagoa city, Southern Nigeria. Appl Water Sci 5:27–37. doi:10.1007/s13201-014-0166-x

    Article  Google Scholar 

  • Pelig-Ba KB (2012) Geochemistry of crystalline rocks from the east of the upper east region of Ghana. Res J Environ Earth Sci 4:534–545

    Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans Am Geophys Union 25:914–928. doi:10.1029/TR025i006p00914

    Article  Google Scholar 

  • Pitkänen P, Partamies S, Luukkonen A (2004) Hydrogeochemical interpretation of baseline groundwater conditions at the Olkiluoto site. Posiva Oy, Finland

    Google Scholar 

  • Plummer LN, Jones BF, Truesdell AH (1976) WATEQF: a FORTRAN IV version of WATEQ—a computer program for calculating chemical equilibrium of natural waters. Dept. of the Interior, Geological Survey, Water Resources Division, Washington, DC

    Google Scholar 

  • Raihan F, Alam JB (2008) Assessment of groundwater quality in Sunamganj of Bangladesh. Iran J Env Heal Sci Eng 5:155–166

    Google Scholar 

  • Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol. doi:10.1007/s00254-004-1012-5

    Article  Google Scholar 

  • Raju NJ (2006) Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environ Geol 52:1067–1074. doi:10.1007/s00254-006-0546-0

    Article  Google Scholar 

  • Ravikumar P, Venkatesharaju K, Prakash KL, Somashekar RK (2011) Geochemistry of groundwater and groundwater prospects evaluation, Anekal Taluk, Bangalore urban district, Karnataka, India. Environ Monit Assess 179:93–112. doi:10.1007/s10661-010-1721-z

    Article  Google Scholar 

  • Razowska-Jaworek L (2014) Calcium and magnesium in groundwater: occurrence and significance for human health. CRC Press, Boca Raton

    Book  Google Scholar 

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Washington, DC

    Book  Google Scholar 

  • Rogers RJ (1989) Geochemical comparison of ground water in areas of New England, New York, and Pennsylvania. Groundwater 27:690–712

    Article  Google Scholar 

  • Rusan MJM, Hinnawi S, Rousan L (2007) Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 215:143–152. doi:10.1016/j.desal.2006.10.032

    Article  Google Scholar 

  • Sadashivaiah C, Ramakrishnaiah CR, Ranganna G (2008) Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. Int J Environ Res Public Health 5:158–164

    Article  Google Scholar 

  • Saka D, Akiti TT, Osae S et al (2013) Hydrogeochemistry and isotope studies of groundwater in the Ga West Municipal Area, Ghana. Appl Water Sci 3:577–588. doi:10.1007/s13201-013-0104-3

    Article  Google Scholar 

  • Salifu M, Yidana SM, Osae S, Armah YS (2013) The influence of the unsaturated zone on the high fluoride contents in groundwater in the middle voltaian aquifers—the Gushegu District, northern region of Ghana. J Hydrogeol Hydrol Eng. doi:10.4172/2325-9647.1000107

    Article  Google Scholar 

  • Salifu M, Aidoo F, Hayford MS et al (2015) Evaluating the suitability of groundwater for irrigational purposes in some selected districts of the upper west region of Ghana. Appl Water Sci. doi:10.1007/s13201-015-0277-z

    Article  Google Scholar 

  • Sanford RF, Pierson CT, Crovelli RA (1993) An objective replacement method for censored geochemical data. Math Geol 25:59–80

    Article  Google Scholar 

  • Sawyer CN, McCarty PL (1967) Chemistry for Sanitary Engineers, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Schlüter T, Trauth MH (2008) Geological atlas of Africa: with notes on stratigraphy, tectonics, economic geology, geohazards, geosites and geoscientific education of each country, 2nd edn. Springer, Berlin (four-coloured rev. and enlarged ed.)

    Google Scholar 

  • Schoeller H (1965) Qualitative evaluation of groundwater resources. In: Methods and techniques of groundwater investigations and development. UNESCO, pp 54–83

  • Simler R (2015) Diagrammes computer program—version 6.5

  • Singaraja C, Chidambaram S, Anandhan P et al (2014) Hydrochemistry of groundwater from Tuticorin District, Tamil Nadu, India. Envirogeochimica Acta 1:172–179

    Google Scholar 

  • Singh AK, Tewary BK, Sinha A (2011) Hydrochemistry and quality assessment of groundwater in part of NOIDA metropolitan city, Uttar Pradesh. J Geol Soc India 78:523–540

    Article  Google Scholar 

  • Smedley PL, Edmunds WM, West JM, Gardner SJ, Pelig-ba KB (1995) Vulnerability of shallow groundwater quality due to natural geochemical environment. Health problems related to groundwaterin Obuasi and Bolgatanga Areas, Ghana. ODA/BGS Technology Development and Research Program, Report 92/5

  • Soltan ME (1998) Characterisation, classification, and evaluation of some ground water samples in upper Egypt. Chemosphere 37:735–745

    Article  Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res Oceans 88:9671–9688

    Article  Google Scholar 

  • Szabolcs I, Darab C (1964) The influence of irrigation water of high sodium carbonate content of soils. In: Proceedings of 8th international congress of ISSS, Trans, II. pp 803–812

  • Talabi AO, Tijani MN (2013) Hydrochemical and stable isotopic characterization of shallow groundwater system in the crystalline basement terrain of Ekiti area, southwestern Nigeria. Appl Water Sci 3:229–245. doi:10.1007/s13201-013-0076-3

    Article  Google Scholar 

  • Tay CK (2012) Hydrochemistry of groundwater in the Savelugu-Nanton District, Northern Ghana. Environ Earth Sci 67:2077–2087. doi:10.1007/s12665-012-1647-6

    Article  Google Scholar 

  • Tomar V, Kamra SK, Kumar S et al (2012) Hydro-chemical analysis and evaluation of groundwater quality for irrigation in Karnal district of Haryana state, India. Int J Environ Sci 3:756. doi:10.6088/ijes.2012030132002

    Article  Google Scholar 

  • Tsur Y, Graham-Tomasi T (1991) The buffer value of groundwater with stochastic surface water supplies. J Environ Econ Manag 21:201–224

    Article  Google Scholar 

  • U.S. Bureau of Mines (1996) Dictionary of mining, mineral, and related terms, 2nd edn. U.S. Bureau of Mines, Washindton, DC

    Google Scholar 

  • Van der Sommen JJ, Geirnaert W (1988) On the continuity of aquifer systems on the crystalline basement of Burkina Faso. In: Simmers I (ed) Estimation of natural groundwater recharge. Springer, Dordrecht, Netherlands, pp 29–45

    Chapter  Google Scholar 

  • Versluys J (1916) Chemische werkingen in den ondergrond der duinen. Verslag Gewone Vergad. Wis- & Nat. afd. Kon. Acad. Wetensch. Amsterdam 24:1671–1676

  • Versluys J (1931) Subterranean water conditions in the coastal regions of the Netherlands. Econ Geol 26:65–95

    Article  Google Scholar 

  • WHO (2011) Guidelines for drinking-water quality. In: WHO, 4th ed. http://www.who.int/water_sanitation_health/publications/dwq_guidelines/en/#. Accessed 30 Mar 2016

  • Wilcox LV et al. (1948) The quality of water for irrigation use. United States Department of Agriculture, Economic Research Service

  • Wilcox LV (1955) Classification and use of irrigation waters. USDA, Circular 969, Washington, DC

  • Williamson DF, Parker RA, Kendrick JS (1989) The box plot: a simple visual method to interpret data. Ann Intern Med 110:916–921. doi:10.1059/0003-4819-110-11-916

    Article  Google Scholar 

  • Yidana SM (2009) The hydrochemical framework of surface water basins in southern Ghana. Environ Geol 57:789–796. doi:10.1007/s00254-008-1357-2

    Article  Google Scholar 

  • Yidana SM (2010) Groundwater classification using multivariate statistical methods: Southern Ghana. J Afr Earth Sci 57:455–469. doi:10.1016/j.jafrearsci.2009.12.002

    Article  Google Scholar 

  • Yidana SM, Yidana A (2010) Assessing water quality using water quality index and multivariate analysis. Environ Earth Sci 59:1461–1473. doi:10.1007/s12665-009-0132-3

    Article  Google Scholar 

  • Yidana SM, Ophori D, Banoeng-Yakubo B (2008) Hydrochemical evaluation of the Voltaian system—the Afram Plains area, Ghana. J Environ Manag 88:697–707. doi:10.1016/j.jenvman.2007.03.037

    Article  Google Scholar 

  • Yidana SM, Banoeng-Yakubo B, Aliou A-S, Akabzaa TM (2012) Groundwater quality in some Voltaian and Birimian aquifers in Northern Ghana—application of multivariate statistical methods and geographic information systems. Hydrol Sci J 57:1168–1183. doi:10.1080/02626667.2012.693612

    Article  Google Scholar 

  • Zaidi FK, Nazzal Y, Jafri MK et al (2015) Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia. Environ Monit Assess 187:1–18. doi:10.1007/s10661-015-4828-4

    Article  Google Scholar 

  • Zektser IS, Everett LG (2004) Groundwater resources of the world and their use. UNESCO, Paris

    Google Scholar 

  • Zoulgami S, Gnazou MDT, Kodom T et al (2015) Physico-chemical study of groundwater in the Northeast of Kara region (Togo). Int J Biol Chem Sci 9:1711–1724. doi:10.4314/ijbcs.v9i3.49

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research via the West African Science Service Center on Climate Change and Adapted Land-Use, and achieved by the collaboration between Abomey-Calavi University, Benin, and Ruhr-Universität Bochum, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouakou Valentin Koffi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koffi, K.V., Obuobie, E., Banning, A. et al. Hydrochemical characteristics of groundwater and surface water for domestic and irrigation purposes in Vea catchment, Northern Ghana. Environ Earth Sci 76, 185 (2017). https://doi.org/10.1007/s12665-017-6490-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6490-3

Keywords

Navigation