Environmental Earth Sciences

, 76:185 | Cite as

Hydrochemical characteristics of groundwater and surface water for domestic and irrigation purposes in Vea catchment, Northern Ghana

  • Kouakou Valentin KoffiEmail author
  • Emmanuel Obuobie
  • Andre Banning
  • Stefan Wohnlich
Original Article


The Vea catchment, mainly underlain by crystalline basement rocks, is located in Northern Ghana. Hydrogeochemical studies were carried out in this area with the objective of identifying the geochemical processes influencing water quality and suitability of surface and groundwater for agricultural and domestic uses. Sixty-one groundwater and four surface water samples were collected from boreholes, dams and rivers and analysed for Ca2+, Mg2+, Na+, K+, HCO3 , Cl, and SO4 2−, Fetot, PO4 3−, Mntot, NH4 +, NO3 , NO2 . In addition, pH, total dissolved solids, electrical conductivity, total hardness, turbidity, colour, salinity and dissolved oxygen were analysed. Chloro-alkaline indices 1 and 2, and characterization of weathering processes suggest that the chemistry of groundwater is dominated by the interaction between water and rocks. Cation exchange and silicate weathering are the dominant processes controlling the chemical composition of the groundwater in the area studied. Mineral saturation indices indicate the presence of at least three groups of groundwater in the Vea catchment with respect to residence time. The meteoric genesis index suggests that 86% of the water samples belong to the shallow meteoric water percolation type. The findings further suggest that the groundwater and surface water in the basin studied are mainly Ca–Mg–HCO3 water type, regardless of the geology. Compared to the water quality guidelines of WHO, the study results on sodium absorption ratio, sodium percentage, magnesium hazard, permeability index and residual sodium carbonate indicate that groundwater and surface water in the Vea catchment are generally suitable for drinking and irrigation purposes.


Vea catchment in Northern Ghana Crystalline basement rock Groundwater quality Hydrogeochemistry Silicate weathering 



This work was supported by the German Federal Ministry of Education and Research via the West African Science Service Center on Climate Change and Adapted Land-Use, and achieved by the collaboration between Abomey-Calavi University, Benin, and Ruhr-Universität Bochum, Germany.


  1. Adongo TA, Kugbe JX, Gbedzi VD (2014) Siltation of the reservoir of Vea irrigation dam in the Bongo District of the upper east region, Ghana. Int J Sci Technol 4:7Google Scholar
  2. Aghazadeh N, Mogaddam AA et al (2010) Assessment of groundwater quality and its suitability for drinking and agricultural uses in the Oshnavieh area, Northwest of Iran. J Environ Prot 1:30CrossRefGoogle Scholar
  3. Alagbe S (2002) Groundwater resources of river Kan Gimi Basin, North-central, Nigeria. Environ Geol 42:404–413. doi: 10.1007/s00254-002-0544-9 CrossRefGoogle Scholar
  4. Alam F (2014) Evaluation of hydrogeochemical parameters of groundwater for suitability of domestic and irrigational purposes: a case study from central Ganga Plain, India. Arab J Geosci 7:4121–4131CrossRefGoogle Scholar
  5. Anku YS, Banoeng-Yakubo B, Asiedu DK, Yidana SM (2009) Water quality analysis of groundwater in crystalline basement rocks, Northern Ghana. Environ Geol 58:989–997. doi: 10.1007/s00254-008-1578-4 CrossRefGoogle Scholar
  6. Apambire WB, Boyle DR, Michel FA (1997) Geochemistry, genesis, and health implications of fluoriferous groundwaters in the upper regions of Ghana. Environ Geol 33:13–24CrossRefGoogle Scholar
  7. Asante FA, Amuakwa-Mensah F (2014) Climate change and variability in Ghana: stocktaking. Climate 3:78–99. doi: 10.3390/cli3010078 CrossRefGoogle Scholar
  8. Attoh K, Evans MJ, Bickford ME (2006) Geochemistry of an ultramafic-rodingite rock association in the Paleoproterozoic Dixcove greenstone belt, southwestern Ghana. J Afr Earth Sci 45:333–346. doi: 10.1016/j.jafrearsci.2006.03.010 CrossRefGoogle Scholar
  9. Banoeng-Yakubo B, Yidana SM, Anku Y et al (2009) Water quality characterization in some Birimian aquifers of the Birim Basin, Ghana. KSCE J Civ Eng 13:179–187. doi: 10.1007/s12205-009-0179-4 CrossRefGoogle Scholar
  10. Batayneh A, Laboun A, Qaisy S et al (2012) Assessing groundwater quality of the shallow alluvial aquifer system in the Midyan Basin, Northwestern Saudi Arabia. Arab Gulf J Sci Res 30:7–13Google Scholar
  11. Belkhiri L, Boudoukha A, Mouni L, Baouz T (2010) Application of multivariate statistical methods and inverse geochemical modeling for characterization of groundwater—a case study: Ain Azel Plain (Algeria). Geoderma 159:390–398. doi: 10.1016/j.geoderma.2010.08.016 CrossRefGoogle Scholar
  12. Berg G (1932) Das Vorkommen der chemischen Elemente auf der Erde. Johann Ambrosius Barth, LeipzigGoogle Scholar
  13. Boateng TK, Opoku F, Acquaah SO, Akoto O (2016) Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben Municipality, Ghana. Environ Earth Sci 75:1–14. doi: 10.1007/s12665-015-5105-0 CrossRefGoogle Scholar
  14. Cerling TE, Pederson BL, Von Damm KL (1989) Sodium–calcium ion exchange in the weathering of shales: implications for global weathering budgets. Geology 17:552–554CrossRefGoogle Scholar
  15. Chapman DV (1996) Water quality assessments: a guide to the use of biota, sediments and water in environmental monitoring, 2nd edn. WHO, LondonCrossRefGoogle Scholar
  16. Clark I (2015) Groundwater geochemistry and isotopes. CRC Press, LondonCrossRefGoogle Scholar
  17. Cobbina SJ, Nyame FK, Obiri S (2012) Groundwater quality in the Sahelian Region of Northern Ghana, West Africa. Res J Environ Earth Sci 4:482–491Google Scholar
  18. Datta PS, Tyagi SK (1996) Major ion chemistry of groundwater in Delhi area: chemical weathering processes and groundwater flow regime. J Geol Soc India 47:179–188Google Scholar
  19. Deutsch WJ, Siegel R (1997) Groundwater geochemistry: fundamentals and applications to contamination. CRC Press, Boca RatonGoogle Scholar
  20. Doneen LD (1964) Notes on water quality in agriculture. In: Water science and engineering paper 4001. Department of Water Sciences and Engineering, University of California, CaliforniaGoogle Scholar
  21. Edjah AKM, Akiti TT, Osae S et al (2015) Hydrogeochemistry and isotope hydrology of surface water and groundwater systems in the Ellembelle District, Ghana, West Africa. Appl Water Sci. doi: 10.1007/s13201-015-0273-3 CrossRefGoogle Scholar
  22. Fianko JR, Nartey VK, Donkor A (2010) The hydrochemistry of groundwater in rural communities within the Tema District, Ghana. Environ Monit Assess 168:441–449. doi: 10.1007/s10661-009-1125-0 CrossRefGoogle Scholar
  23. Firempong CK, Nsiah K, Awunyo-Vitor D, Dongsogo J (2013) Soluble fluoride levels in drinking water—a major risk factor of dental fluorosis among children in Bongo community of Ghana. Ghana Med J 47:16–23Google Scholar
  24. Fisher RS, Mullican William F (1997) Hydrochemical evolution of sodium–sulfate and sodium–chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol J 2:4–16CrossRefGoogle Scholar
  25. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall Inc., New JerseyGoogle Scholar
  26. Ganyaglo SY, Banoeng-Yakubo B, Osae S et al (2011) Water quality assessment of groundwater in some rock types in parts of the eastern region of Ghana. Environ Earth Sci 62:1055–1069. doi: 10.1007/s12665-010-0594-3 CrossRefGoogle Scholar
  27. Ghana Standards Authority (GSA) (2013) Water Quality—Specification for drinking water, 4th edn. Ghana Standards Authority, AccraGoogle Scholar
  28. Ghana Statistical Service (2012) 2010 Population and Housing Census. Ghana Statistical Service, AccraGoogle Scholar
  29. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090CrossRefGoogle Scholar
  30. Gibrilla A, Osae S, Akiti TT et al (2010) Hydrogeochemical and groundwater quality studies in the Northern Part of the Densu River Basin of Ghana. J Water Resour Prot 02:1071–1081. doi: 10.4236/jwarp.2010.212126 CrossRefGoogle Scholar
  31. Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, AmsterdamGoogle Scholar
  32. Hirdes W, Konan KG, N’Da D, Okou A, Sea P, Zamble ZB, Davis DW (2007) Geology of the northern portion of the Oboisso Area, Côte d’Ivoire. Sheets 4A, 4B, 4B BIS, 4. Direction de la Géologie, Abidjan, Côte d’Ivoire and Bundesanstalt für Geowissenschaften und Rohstoffe, HanoverGoogle Scholar
  33. Hounslow A (1995) Water quality data: analysis and interpretation. Lewis Publishers, Boca RatonGoogle Scholar
  34. Ifabiyi IP (2008) Depth of hand dug wells and water chemistry: example from Ibadan northeast local government area (LGA), Oyo-state, Nigeria. J Soc Sci 17:261–266Google Scholar
  35. Ishaku I, Ahmed A, Abubakar M (2011) Assessment of groundwater quality using chemical indices and GIS mapping in Jada area, Northwestern Nigeria. J Earth Sci Geotech Eng 1:35–60Google Scholar
  36. Jagadeshan G, Kalpana L, Elango L (2015) Hydrogeochemistry of high fluoride groundwater in hard rock aquifer in a part of Dharmapuri District, Tamil Nadu, India. Geochem Int 53:554–564. doi: 10.1134/S0016702915060038 CrossRefGoogle Scholar
  37. Kaka EA, Akiti TT, Nartey VK et al (2011) Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the southeastern Volta River Basin: Manyakrobo area, Ghana. Elixir Agric 39:4793–4807Google Scholar
  38. Karanth KR (1987) Ground water assessment: development and management. Tata McGraw-Hill Education, New DelhiGoogle Scholar
  39. Kesse GO (1985) The mineral and rock resources of Ghana. A.A. Balkema, RotterdamGoogle Scholar
  40. Kortatsi BK (2006) Hydrochemical characterization of groundwater in the Accra plains of Ghana. Environ Geol 50:299–311. doi: 10.1007/s00254-006-0206-4 CrossRefGoogle Scholar
  41. Kortatsi BK (2007) Hydrochemical framework of groundwater in the Ankobra Basin, Ghana. Aquat Geochem 13:41–74. doi: 10.1007/s10498-006-9006-4 CrossRefGoogle Scholar
  42. Kumar SK, Logeshkumaran A, Magesh NS et al (2014) Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Appl Water Sci 5:335–343. doi: 10.1007/s13201-014-0196-4 CrossRefGoogle Scholar
  43. Kumar PS, Jegathambal P, Nair S, James EJ (2015) Temperature and pH dependent geochemical modeling of fluoride mobilization in the groundwater of a crystalline aquifer in Southern India. J Geochem Explor 156:1–9. doi: 10.1016/j.gexplo.2015.04.008 CrossRefGoogle Scholar
  44. Lakshmanan E, Kannan R, Kumar MS (2003) Major ion chemistry and identification of hydrogeochemical processes of ground water in a part of Kancheepuram District, Tamil Nadu, India. Environ Geosci 10:157–166CrossRefGoogle Scholar
  45. Lasm T, De Lasme O, Oga M-S et al (2011) Caractérisation hydrochimique des aquifères fissurés de la région de San-Pedro (Sud-Ouest de la Côte d’Ivoire)Google Scholar
  46. Lloyd JW, Heathcote JAA (1985) Natural inorganic hydrochemistry in relation to ground water. Oxford University Press, New YorkGoogle Scholar
  47. Loh YS, Banoeng-Yakubo B, Yidana SM et al (2012) Hydrochemical characterisation of groundwater in parts of the Volta Basin, Northern Ghana. Ghana Min J 13:24–32Google Scholar
  48. Ma H (2016) Major ion chemistry of groundwater in the Sangong River Watershed, Northwestern China. Environ Earth Sci 75:1–17. doi: 10.1007/s12665-016-5321-2 CrossRefGoogle Scholar
  49. Meybeck M (1987) Global chemical weathering of surficial rocks estimated from river dissolved loads. Am J Sci 287:401–428CrossRefGoogle Scholar
  50. Middelburg JJ, van der Weijden CH, Woittiez JR (1988) Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem Geol 68:253–273CrossRefGoogle Scholar
  51. Murray RJ (1960) The geology of the Zuanengu 1/2 field sheet. Ghana Geol Surv Bull 25:117Google Scholar
  52. Nartey VK, Bam EK, Mahamah M (2012) The geochemistry of some ground and surface water systems in the East Gonja District of Northern Ghana. J Environ Earth Sci 2:10–20Google Scholar
  53. Nazzal Y, Ahmed I, Al-Arifi NS et al (2014) A pragmatic approach to study the groundwater quality suitability for domestic and agricultural usage, Saq aquifer, northwest of Saudi Arabia. Environ Monit Assess 186:4655–4667CrossRefGoogle Scholar
  54. Oberthür T, Vetter U, Davis DW, Amanor JA (1998) Age constraints on gold mineralization and Paleoproterozoic crustal evolution in the Ashanti belt of southern Ghana. Precambrian Res 89:129–143CrossRefGoogle Scholar
  55. Obuobie E (2008) Estimation of groundwater recharge in the context of future climate change in the White Volta River Basin, West Africa, Paul L.G.Vlek. ZEF, BonnGoogle Scholar
  56. Odukoya AM, Folorunso AF, Ayolabi EA, Adeniran EA (2013) Groundwater quality and identification of hydrogeochemical processes within University of Lagos, Nigeria. J Water Resour Prot 05:930–940. doi: 10.4236/jwarp.2013.510096 CrossRefGoogle Scholar
  57. Okiongbo KS, Douglas RK (2015) Evaluation of major factors influencing the geochemistry of groundwater using graphical and multivariate statistical methods in Yenagoa city, Southern Nigeria. Appl Water Sci 5:27–37. doi: 10.1007/s13201-014-0166-x CrossRefGoogle Scholar
  58. Pelig-Ba KB (2012) Geochemistry of crystalline rocks from the east of the upper east region of Ghana. Res J Environ Earth Sci 4:534–545Google Scholar
  59. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. EOS Trans Am Geophys Union 25:914–928. doi: 10.1029/TR025i006p00914 CrossRefGoogle Scholar
  60. Pitkänen P, Partamies S, Luukkonen A (2004) Hydrogeochemical interpretation of baseline groundwater conditions at the Olkiluoto site. Posiva Oy, FinlandGoogle Scholar
  61. Plummer LN, Jones BF, Truesdell AH (1976) WATEQF: a FORTRAN IV version of WATEQ—a computer program for calculating chemical equilibrium of natural waters. Dept. of the Interior, Geological Survey, Water Resources Division, Washington, DCGoogle Scholar
  62. Raihan F, Alam JB (2008) Assessment of groundwater quality in Sunamganj of Bangladesh. Iran J Env Heal Sci Eng 5:155–166Google Scholar
  63. Rajmohan N, Elango L (2004) Identification and evolution of hydrogeochemical processes in the groundwater environment in an area of the Palar and Cheyyar River Basins, Southern India. Environ Geol. doi: 10.1007/s00254-004-1012-5 CrossRefGoogle Scholar
  64. Raju NJ (2006) Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah District, Andhra Pradesh, South India. Environ Geol 52:1067–1074. doi: 10.1007/s00254-006-0546-0 CrossRefGoogle Scholar
  65. Ravikumar P, Venkatesharaju K, Prakash KL, Somashekar RK (2011) Geochemistry of groundwater and groundwater prospects evaluation, Anekal Taluk, Bangalore urban district, Karnataka, India. Environ Monit Assess 179:93–112. doi: 10.1007/s10661-010-1721-z CrossRefGoogle Scholar
  66. Razowska-Jaworek L (2014) Calcium and magnesium in groundwater: occurrence and significance for human health. CRC Press, Boca RatonCrossRefGoogle Scholar
  67. Richards LA (1954) Diagnosis and improvement of saline and alkali soils. United States Department of Agriculture, Washington, DCCrossRefGoogle Scholar
  68. Rogers RJ (1989) Geochemical comparison of ground water in areas of New England, New York, and Pennsylvania. Groundwater 27:690–712CrossRefGoogle Scholar
  69. Rusan MJM, Hinnawi S, Rousan L (2007) Long term effect of wastewater irrigation of forage crops on soil and plant quality parameters. Desalination 215:143–152. doi: 10.1016/j.desal.2006.10.032 CrossRefGoogle Scholar
  70. Sadashivaiah C, Ramakrishnaiah CR, Ranganna G (2008) Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. Int J Environ Res Public Health 5:158–164CrossRefGoogle Scholar
  71. Saka D, Akiti TT, Osae S et al (2013) Hydrogeochemistry and isotope studies of groundwater in the Ga West Municipal Area, Ghana. Appl Water Sci 3:577–588. doi: 10.1007/s13201-013-0104-3 CrossRefGoogle Scholar
  72. Salifu M, Yidana SM, Osae S, Armah YS (2013) The influence of the unsaturated zone on the high fluoride contents in groundwater in the middle voltaian aquifers—the Gushegu District, northern region of Ghana. J Hydrogeol Hydrol Eng. doi: 10.4172/2325-9647.1000107 CrossRefGoogle Scholar
  73. Salifu M, Aidoo F, Hayford MS et al (2015) Evaluating the suitability of groundwater for irrigational purposes in some selected districts of the upper west region of Ghana. Appl Water Sci. doi: 10.1007/s13201-015-0277-z CrossRefGoogle Scholar
  74. Sanford RF, Pierson CT, Crovelli RA (1993) An objective replacement method for censored geochemical data. Math Geol 25:59–80CrossRefGoogle Scholar
  75. Sawyer CN, McCarty PL (1967) Chemistry for Sanitary Engineers, 2nd edn. McGraw Hill, New YorkGoogle Scholar
  76. Schlüter T, Trauth MH (2008) Geological atlas of Africa: with notes on stratigraphy, tectonics, economic geology, geohazards, geosites and geoscientific education of each country, 2nd edn. Springer, Berlin (four-coloured rev. and enlarged ed.) Google Scholar
  77. Schoeller H (1965) Qualitative evaluation of groundwater resources. In: Methods and techniques of groundwater investigations and development. UNESCO, pp 54–83Google Scholar
  78. Simler R (2015) Diagrammes computer program—version 6.5Google Scholar
  79. Singaraja C, Chidambaram S, Anandhan P et al (2014) Hydrochemistry of groundwater from Tuticorin District, Tamil Nadu, India. Envirogeochimica Acta 1:172–179Google Scholar
  80. Singh AK, Tewary BK, Sinha A (2011) Hydrochemistry and quality assessment of groundwater in part of NOIDA metropolitan city, Uttar Pradesh. J Geol Soc India 78:523–540CrossRefGoogle Scholar
  81. Smedley PL, Edmunds WM, West JM, Gardner SJ, Pelig-ba KB (1995) Vulnerability of shallow groundwater quality due to natural geochemical environment. Health problems related to groundwaterin Obuasi and Bolgatanga Areas, Ghana. ODA/BGS Technology Development and Research Program, Report 92/5Google Scholar
  82. Soltan ME (1998) Characterisation, classification, and evaluation of some ground water samples in upper Egypt. Chemosphere 37:735–745CrossRefGoogle Scholar
  83. Stallard RF, Edmond JM (1983) Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res Oceans 88:9671–9688CrossRefGoogle Scholar
  84. Szabolcs I, Darab C (1964) The influence of irrigation water of high sodium carbonate content of soils. In: Proceedings of 8th international congress of ISSS, Trans, II. pp 803–812Google Scholar
  85. Talabi AO, Tijani MN (2013) Hydrochemical and stable isotopic characterization of shallow groundwater system in the crystalline basement terrain of Ekiti area, southwestern Nigeria. Appl Water Sci 3:229–245. doi: 10.1007/s13201-013-0076-3 CrossRefGoogle Scholar
  86. Tay CK (2012) Hydrochemistry of groundwater in the Savelugu-Nanton District, Northern Ghana. Environ Earth Sci 67:2077–2087. doi: 10.1007/s12665-012-1647-6 CrossRefGoogle Scholar
  87. Tomar V, Kamra SK, Kumar S et al (2012) Hydro-chemical analysis and evaluation of groundwater quality for irrigation in Karnal district of Haryana state, India. Int J Environ Sci 3:756. doi: 10.6088/ijes.2012030132002 CrossRefGoogle Scholar
  88. Tsur Y, Graham-Tomasi T (1991) The buffer value of groundwater with stochastic surface water supplies. J Environ Econ Manag 21:201–224CrossRefGoogle Scholar
  89. U.S. Bureau of Mines (1996) Dictionary of mining, mineral, and related terms, 2nd edn. U.S. Bureau of Mines, Washindton, DCGoogle Scholar
  90. Van der Sommen JJ, Geirnaert W (1988) On the continuity of aquifer systems on the crystalline basement of Burkina Faso. In: Simmers I (ed) Estimation of natural groundwater recharge. Springer, Dordrecht, Netherlands, pp 29–45CrossRefGoogle Scholar
  91. Versluys J (1916) Chemische werkingen in den ondergrond der duinen. Verslag Gewone Vergad. Wis- & Nat. afd. Kon. Acad. Wetensch. Amsterdam 24:1671–1676Google Scholar
  92. Versluys J (1931) Subterranean water conditions in the coastal regions of the Netherlands. Econ Geol 26:65–95CrossRefGoogle Scholar
  93. WHO (2011) Guidelines for drinking-water quality. In: WHO, 4th ed. Accessed 30 Mar 2016
  94. Wilcox LV et al. (1948) The quality of water for irrigation use. United States Department of Agriculture, Economic Research ServiceGoogle Scholar
  95. Wilcox LV (1955) Classification and use of irrigation waters. USDA, Circular 969, Washington, DCGoogle Scholar
  96. Williamson DF, Parker RA, Kendrick JS (1989) The box plot: a simple visual method to interpret data. Ann Intern Med 110:916–921. doi: 10.1059/0003-4819-110-11-916 CrossRefGoogle Scholar
  97. Yidana SM (2009) The hydrochemical framework of surface water basins in southern Ghana. Environ Geol 57:789–796. doi: 10.1007/s00254-008-1357-2 CrossRefGoogle Scholar
  98. Yidana SM (2010) Groundwater classification using multivariate statistical methods: Southern Ghana. J Afr Earth Sci 57:455–469. doi: 10.1016/j.jafrearsci.2009.12.002 CrossRefGoogle Scholar
  99. Yidana SM, Yidana A (2010) Assessing water quality using water quality index and multivariate analysis. Environ Earth Sci 59:1461–1473. doi: 10.1007/s12665-009-0132-3 CrossRefGoogle Scholar
  100. Yidana SM, Ophori D, Banoeng-Yakubo B (2008) Hydrochemical evaluation of the Voltaian system—the Afram Plains area, Ghana. J Environ Manag 88:697–707. doi: 10.1016/j.jenvman.2007.03.037 CrossRefGoogle Scholar
  101. Yidana SM, Banoeng-Yakubo B, Aliou A-S, Akabzaa TM (2012) Groundwater quality in some Voltaian and Birimian aquifers in Northern Ghana—application of multivariate statistical methods and geographic information systems. Hydrol Sci J 57:1168–1183. doi: 10.1080/02626667.2012.693612 CrossRefGoogle Scholar
  102. Zaidi FK, Nazzal Y, Jafri MK et al (2015) Reverse ion exchange as a major process controlling the groundwater chemistry in an arid environment: a case study from northwestern Saudi Arabia. Environ Monit Assess 187:1–18. doi: 10.1007/s10661-015-4828-4 CrossRefGoogle Scholar
  103. Zektser IS, Everett LG (2004) Groundwater resources of the world and their use. UNESCO, ParisGoogle Scholar
  104. Zoulgami S, Gnazou MDT, Kodom T et al (2015) Physico-chemical study of groundwater in the Northeast of Kara region (Togo). Int J Biol Chem Sci 9:1711–1724. doi: 10.4314/ijbcs.v9i3.49 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.WASCAL GRP Climate Change and Water ResourcesUniversity of Abomey-CalaviCotonouBenin
  2. 2.Council for Scientific and Industrial ResearchWater Research InstituteAchimota, AccraGhana
  3. 3.Hydrogeology DepartmentRuhr Universität BochumBochumGermany

Personalised recommendations