Skip to main content

Advertisement

Log in

Applying the scores of multivariate statistical analyses to characterize the relationships between the hydrochemical properties and groundwater conditions in respect of the monsoon variation in Kapas Island, Terengganu, Malaysia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The different factors (seasonal changes) and variables (physicochemical) controlling the groundwater hydrochemistry of Kapas Island were identified using multivariate techniques principal component analysis (PCA), discriminant analysis (DA) and hierarchy cluster analysis (HCA). In the present study, the hydrochemistry of 216 groundwater samples, consisting of information concerning the in situ parameters and major ions in six monitoring boreholes, was studied and compared in two different monsoon seasons. The dominant variables derived from four components by PCA in the pre-monsoon indicated the influence of the salinity process, while the dominant variables derived from three components in the post-monsoon mostly indicated on the mineralization process. The DA gave the final variables after discriminating the insignificant variables based on the pre- and post-monsoon classifications. This provided important data reduction in terms of the mineralization process, as it only discriminated physical variables (TDS, EC, salinity, DO and temperature). Based on the HCA result, samples belonging to stations KW 3 and KW 4 were under Ca-rich water, while the remaining boreholes were grouped in Na-rich water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Isa et al. 2014a, b)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah MP (1981) Laporan penyiasatan kajibumi. Ibu Pejabat Penyiasatan Kajibumi, Malaysia

    Google Scholar 

  • Ali CA, Mohamed KR, Abdullah I (2001) Warisan Geologi Malaysia-Pemetaan Geowarisan dan Pencirian Geotapak. In: Komoo I, Tjia HD, Leman MS (eds) Institut Alam Sekitar dan Pembangunan (LESTARI), Selangor

  • APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Water Works Association, Water Environment Federation, Washington

    Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Rotterdam

    Google Scholar 

  • Aris AZ, Praveena SM, Abdullah MH, Radojevic M (2012) Statistical approaches and hydrochemical modelling of groundwater system in a small tropical island. J Hydroinformatics 14(1):206–220

    Article  Google Scholar 

  • Barragán-Alarcón G (2012) Characterization of hydrogeochemical processes in associated aquifers of a semiarid region (SE Spain). Groundwater Monit Remediat 32(1):83–98

    Article  Google Scholar 

  • Belkhiri L, Narany TS (2015) Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resour Manag 29(6):2073–2089

    Article  Google Scholar 

  • Bloomfield JP, Williams RJ, Gooddy DC, Cape JN, Guha P (2006) Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Sci total Environ 369(1):163–177

    Article  Google Scholar 

  • Chowdhury MTA, Meharg AA, Deacon C, Hossain M, Norton GJ (2012) Hydrogeochemistry and arsenic contamination of groundwater in the Haor basins of Bangladesh. Water Quality Expo Health 4(2):67–78

    Article  Google Scholar 

  • Critto A, Carlon C, Marcomini A (2003) Characterization of contaminated soil and groundwater surrounding an illegal landfill (S. Giuliano, Venice, Italy) by principal component analysis and kriging. Environ Pollut 122(2):235–244

    Article  Google Scholar 

  • de Figueredo KSL, Martínez-Huitle CA, Teixeira ABR, de Pinho ALS, Vivacqua CA, da Silva DR (2014) Study of produced water using hydrochemistry and multivariate statistics in different production zones of mature fields in the Potiguar Basin–Brazil. J Petrol Sci Eng 116:109–114

  • Delpla I, Jung AV, Baures E, Clement M, Thomas O (2009) Impacts of climate change on surface water quality in relation to drinking water production. Environ Int 35(8):1225–1233

    Article  Google Scholar 

  • Farmaki E, Thomaidis N, Simeonov V, Efstathiou C (2012) A comparative chemometric study for water quality expertise of the Athenian water reservoirs. Environ Monit Assess 184(12):7635–7652

    Article  Google Scholar 

  • Farnham I, Stetzenbach K, Singh A, Johannesson K (2000) Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system. Math Geol 32(8):943–968

    Article  Google Scholar 

  • Han D, Song X, Currell MJ (2016) Identification of anthropogenic and natural inputs of sulfate into a karstic coastal groundwater system in northeast China: evidence from major ions, δ 13C DIC and δ 34S SO4. Hydrol Earth Syst Sci 20(5):1983–1999

    Article  Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34(3):807–816

    Article  Google Scholar 

  • Hidalgo MC, Cruz-Sanjulian J (2001) Groundwater composition, hydrochemical evolution and mass transfer in a regional detrital aquifer (Baza basin, southern Spain). Appl Geochem 16(7):745–758

    Article  Google Scholar 

  • Isa NM, Aris AZ, Sulaiman WNA (2012) Extent and severity of groundwater contamination based on hydrochemistry mechanism of sandy tropical coastal aquifer. Sci Total Environ 438:414–425

    Article  Google Scholar 

  • Isa NM, Aris AZ, Lim WY, Sulaiman WNA, Praveena SM (2014a) Evaluation of heavy metal contamination in groundwater samples from Kapas Island, Terengganu, Malaysia. Arab J Geosci 7(3):1087–1100

    Article  Google Scholar 

  • Isa NM, Aris AZ, Wan Sulaiman WNA, Lim AP, Looi LJ (2014b) Comparison of monsoon variations over groundwater hydrochemistry changes in small Tropical Island and its repercussion on quality. Hydrol Earth Syst Sci Discuss 11(6):6405–6440

    Article  Google Scholar 

  • Jiang J, Wang J, Liu S, Lin C, He M, Liu X (2013) Background, baseline, normalization, and contamination of heavy metals in the Liao River Watershed sediments of China. J Asian Earth Sci 73:87–94

    Article  Google Scholar 

  • Kargar M, Khorasani N, Karami M, Rafiee G, Naseh R (2012) Statistical source identification of major and trace elements in groundwater downward the tailings dam of Miduk Copper Complex, Kerman,Iran. Environ Monit Assess 184(10):6173–6185

    Article  Google Scholar 

  • Khelfaoui H, Chaffai H, Mudry J, Hani A (2013) Use of discriminant statistical analysis to determine the origin of an industrial pollution type in the aquiferous system of the area of Berrahal Algeria. Arab J Geosci. doi:10.1007/s12517-012-0736-x

    Article  Google Scholar 

  • Krishna AK, Satyanarayanan M, Govil PK (2009) Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. J Hazard Mater 167:366–373

    Article  Google Scholar 

  • Kumar PJS (2014) Evolution of groundwater chemistry in and around Vaniyambadi industrial area: differentiating the natural and anthropogenic sources of contamination. Chem Erde Geochem 74(4):641–651

    Article  Google Scholar 

  • Kumar M, Ramanathan AL, Rao M, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geol 50(7):1025–1039

    Article  Google Scholar 

  • Kumar PJS, Jegathambal P, James EJ (2011) Multivariate and geostatistical analysis of groundwater quality in Palar river basin. Int J Geol 5(4):108–119

    Google Scholar 

  • Lambrakis N, Antonakos A, Panagopoulos G (2004) The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res 38(7):1862–1872

    Article  Google Scholar 

  • Lee JY, Song SH (2007) Groundwater chemistry and ionic ratios in a western coastal aquifer of Buan, Korea: implication for seawater intrusion. Geosci J 11(3):259–270

    Article  Google Scholar 

  • Lim WY, Aris AZ, Zakaria MP (2012) Spatial variability of metals in surface water and sediment in the langat river and geochemical factors that influence their water-sediment interactions. Sci World J 2012:1–14

    Article  Google Scholar 

  • Lu KL, Liu CW, Jang CS (2012) Using multivariate statistical methods to assess the groundwater quality in an arsenic-contaminated area of Southwestern Taiwan. Environ Monit Assess 184(10):6071–6085

    Article  Google Scholar 

  • Miao Z, Brusseau ML, Carroll KC, Carreón-Diazconti C, Johnson B (2012) Sulfate reduction in groundwater: characterization and applications for remediation. Environ Geochem Health 34(4):539–550

    Article  Google Scholar 

  • Miao Z, Carreón-Diazconti C, Carroll KC, Brusseau ML (2014) The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater. J Contam Hydrol 164:240–250

    Article  Google Scholar 

  • Nelson D (2002) Natural variations in the composition of groundwater. Drinking Water Program, Oregon Department of Human Services, Springfield, Portland

    Google Scholar 

  • Papaioannou A, Mavridou A, Hadjichristodoulou C, Papastergiou P, Pappa O, Dovriki E, Rigas I (2010) Application of multivariate statistical methods for groundwater physicochemical and biological quality assessment in the context of public health. Environ Monit Assess 170(1–4):87–97

    Article  Google Scholar 

  • Papatheodorou G, Demopoulou G, Lambrakis N (2006) A long-term study of temporal hydrochemical data in a shallow lake using multivariate statistical techniques. Ecol Model 193(3–4):759–776

    Article  Google Scholar 

  • Ratha DS, Venkataraman G (1997) Application of statistical methods to study seasonal variation in the mine contaminants in soil and groundwater of Goa, India. Environ Geol 29(3–4):253–262

    Article  Google Scholar 

  • Reghunath R, Murthy TRS, Raghavan BR (2002) The utility of multivariate statistical techniques in hydrogeochemical studies: an example from Karnataka, India. Water Res 36(10):2437–2442

    Article  Google Scholar 

  • Salem ZE, Al Temamy AM, Salah MK, Kassab M (2016) Origin and characteristics of brackish groundwater in Abu Madi coastal area, Northern Nile Delta, Egypt. Estuar Coast Shelf Sci 178:21–35

    Article  Google Scholar 

  • Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WNA, Juahir H, Fakharian K (2014) Identification of the hydrogeochemical processes in groundwater using classic integrated geochemical methods and geostatistical techniques, in Amol–Babol Plain, Iran. Sci World J 2014:15

    Article  Google Scholar 

  • Shuib MK (2003) Transpression in the strata of Pulau Kapas, Terengganu. Geol Soc Malaysia Bul 46:299–306

    Article  Google Scholar 

  • Singh KP, Malik A, Singh VK, Mohan D, Sinha S (2005) Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Anal Chim Acta 550(1–2):82–91

    Article  Google Scholar 

  • Singh CK, Kumar A, Shashtri S, Kumar A, Kumar P, Mallick J (2017) Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. J Geochem Explor 175:59–71

    Article  Google Scholar 

  • Stetzenbach KJ, Farnham IM, Hodge VF, Johannesson KH (1999) Using multivariate statistical analysis of groundwater major cation and trace element concentrations to evaluate groundwater flow in a regional aquifer. Hydrol Process 13(17):2655–2673

    Article  Google Scholar 

  • Subyani AM, Ahmadi MEA (2010) Multivariate statistical analysis of groundwater quality in Wadi Ranyah, Saudi Arabia. JAKU Earth Sci 21(2):29–46

    Google Scholar 

  • Suk H, Lee KK (1999) Characterization of a ground water hydrochemical system through multivariate analysis: clustering into ground water zones. Ground Water 37(3):358–366

    Article  Google Scholar 

  • Vega M, Pardo R, Barrado E, Debán L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32(12):3581–3592

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  • White I, Falkland T, Perez P, Dray A, Metutera T, Metai E, Overmars M (2007) Challenges in freshwater management in low coral atolls. J Clean Prod 15(16):1522–1528

    Article  Google Scholar 

  • Worthington SRH, Ford DC (1995) High sulfate concentrations in limestone springs: an important factor in conduit initiation? Environ Geol 25(1):9–15

    Article  Google Scholar 

  • Yongming H, Peixuan D, Junji C, Posmentier ES (2006) Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ 355(1–3):176–186

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Ministry of Higher Education, Vot no. 5523724 (07/11/09/696FR). The provision of an allowance, Graduate Research Funding (GRF) by Universiti Putra Malaysia and MOHE Budget Mini Scholarship and MyPhD are gratefully acknowledged. The valuable help from the Faculty of Environmental Studies and Faculty of Engineering, Universiti Putra Malaysia, in preparing boreholes for this research was much appreciated. High appreciation is also extended to the Department of Minerals and Geoscience, Terengganu, and the Malaysian Nuclear Agency for providing helpful information.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Zaharin Aris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isa, N.M., Aris, A.Z., Sheikhy Narany, T. et al. Applying the scores of multivariate statistical analyses to characterize the relationships between the hydrochemical properties and groundwater conditions in respect of the monsoon variation in Kapas Island, Terengganu, Malaysia. Environ Earth Sci 76, 169 (2017). https://doi.org/10.1007/s12665-017-6487-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6487-y

Keywords

Navigation