Environmental Earth Sciences

, 76:178 | Cite as

Suitability of linden and elder in the assessment of environmental pollution of Brestovac spa and Bor lake (Serbia)

  • Tanja S. Kalinovic
  • Snezana M. SerbulaEmail author
  • Jelena V. Kalinovic
  • Ana A. Radojevic
  • Jelena V. Petrovic
  • Mirjana M. Steharnik
  • Jelena S. Milosavljevic
Original Article


The suitability of linden and elder as biomonitors was evaluated in the tourist zone of the Bor region well known for pyrometallurgical copper production. The concentrations of As, Cu, Pb and Zn in the soil, washed and unwashed leaves and roots of linden and elder were determined. The absorption of As, Cu, Pb and Zn from soil to roots and leaves, as well as the translocation of the studied elements from roots to leaves, was analysed. It was observed that the soil in the tourist zone of Bor (Bor lake and Brestovac spa) was greatly polluted with Cu and As. Linden and elder leaves can be used as a low-cost material for detection of As, Cu, Pb and Zn in the atmospheric deposition, which was concluded due to the amounts of these elements removed after a washing treatment. Thus, canopies of linden and elder might have an important role in the removal of the polluting substances from the air. The elder leaves were more suitable to be used for indication of environmental pollution with As, Cu and Pb than the linden leaves. The area of the Bor lake sampling site had higher air pollution with As and Pb than Brestovac spa, since greater amounts of As and Pb were washed off the linden and elder leaves from the Bor lake sampling site. The linden and elder used different adaptation strategies in conditions of the increased soil and air pollution. These strategies were based on different efficiencies of element absorption from the soil and on limited or efficient translocation of the studied elements from roots to leaves, and therefore, they have an important role in the biogeochemical cycling of the examined elements in the environment.


Arsenic Atmospheric deposition Copper Sambucus Nigra Tilia spp 



The authors are grateful to the Ministry of Education and Science of Serbia for financial support (Project Nos. 46010 and 33038). Our thanks go to Professor Mara Manzalović from Technical faculty in Bor (University of Belgrade) for providing language help.

Supplementary material

12665_2017_6485_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 14 kb)


  1. Alagić SČ, Tošić SB, Dimitrijević MD, Antonijević MM, Nujkić MM (2015) Assessment of the quality of polluted areas based on the content of heavy metals in different organs of the grapevine (Vitis vinifera) cv Tamjanika. Environ Sci Pollut Res 22:7155–7175. doi: 10.1007/s11356-014-3933-1 CrossRefGoogle Scholar
  2. Aničić M, Spasić T, Tomašević M, Rajšić S, Tasić M (2011) Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecol Indic 11:824–830. doi: 10.1016/j.ecolind.2010.10.009 CrossRefGoogle Scholar
  3. Antonijević MM, Dimitrijević MD, Milić SM, Nujkić MM (2012) Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia). J Environ Monit 14:866–877. doi: 10.1039/c2em10803h CrossRefGoogle Scholar
  4. Bertolotti G, Gialanella S (2014) Review: use of conifer needles as passive samplers of inorganic pollutants in air quality monitoring. Anal Methods 6:6208–6222. doi: 10.1039/C4AY00172A CrossRefGoogle Scholar
  5. Chen B, Stein AF, Castell N, de la Rosa JD, Sanchez de la Campa AM, Gonzalez-Castanedo Y, Draxler RR (2012) Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe. Atmos Environ 49:114–122. doi: 10.1016/j.atmosenv.2011.12.014 CrossRefGoogle Scholar
  6. Csavina J, Field J, Taylor MP, Gao S, Landázuri A, Betterton EA, Sáez AE (2012) A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Sci Total Environ 433:58–73. doi: 10.1016/j.scitotenv.2012.06.013 CrossRefGoogle Scholar
  7. Dimitrijević MD, Nujkić MM, Alagić SČ, Milić SM, Tošić SB (2016) Heavy metal contamination of topsoil and parts of peach-tree growing at different distances from a smelting complex. Int J Environ Sci Technol 13:615–630. doi: 10.1007/s13762-015-0905-z CrossRefGoogle Scholar
  8. Dmuchowski W, Bytnerowicz A (2009) Long-term (1992–2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: determination by chemical analysis of moss bags and leaves of Crimean linden. Environ Pollut 157:3413–3421. doi: 10.1016/j.envpol.2009.06.019 CrossRefGoogle Scholar
  9. EC (2004) Council Directive 2004/107/EC of the European Parliament and of the Council relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air, Official Journal of the European Communities (2004) L23/10Google Scholar
  10. EIA Study-New Smelter and Sulphuric Acid Plant Project (2010). University of Belgrade, Faculty of Metallurgy, SNC LavalinGoogle Scholar
  11. Favas PJC, Pratas J, Prasad MNV (2013) Temporal variation in the arsenic and metal accumulation in the maritime pine tree grown on contaminated soils. Int J Environ Sci Technol 10:809–826. doi: 10.1007/s13762-012-0115-x CrossRefGoogle Scholar
  12. Freitas H, Prasad MNV, Pratas J (2004) Analysis of serpentinophytes from north–east of Portugal for trace metal accumulation–relevance to the management of mine environment. Chemosphere 54:1625–1642. doi: 10.1016/j.chemosphere.2003.09.045 CrossRefGoogle Scholar
  13. FIDECO and ERM, Agencija za privatizaciju—Republika Srbija (2006) Analiza stanja životne sredine od šteta nastalih kao posledica prethodnog rada RTB Bor -Finalni izveštaj, Fideco d.o.o. and ERM’s Milan Office.
  14. Hu Y, Wang D, Wei L, Zhang X, Song B (2014) Bioaccumulation of heavy metals in plant leaves from Yan’an city of the Loess Plateau, China. Ecotox Environ Safe 110:82–88. doi: 10.1016/j.ecoenv.2014.08.021 CrossRefGoogle Scholar
  15. ISO International Organisation for Standardisation (2005) Soil quality: determination of pH, ISO 10390. ISO, GenevaGoogle Scholar
  16. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Taylor and Francis Group, Boca RatonGoogle Scholar
  17. Kalinovic TS, Serbula SM, Radojevic AA, Kalinovic JV, Steharnik MM, Petrovic JV (2016) Elder, linden and pine biomonitoring ability of pollution emitted from the copper smelter and the tailings ponds. Geoderma 262(2016):266–275. doi: 10.1016/j.geoderma.2015.08.027 CrossRefGoogle Scholar
  18. Kapoor CS, Bamniya BR, Kapoor K (2012) Natural and effective control of air pollution through plants-studies on a tree species: Holoptelea integrifolia L. Mitig Adapt Strateg Glob Change 17:793–803. doi: 10.1007/s11027-011-9344-4 CrossRefGoogle Scholar
  19. LEAP (2003) Local Environmental Action Plan of Municipality of Bor (in Serbian)Google Scholar
  20. Li-qiang M, Hai-yan S, Ning Z (2004) Absorption capacity of major urban afforestation species in northeastern China to heavy metal pollutants in the atmosphere. J For Res 15(1):73–76. doi: 10.1007/BF02858015 CrossRefGoogle Scholar
  21. Madejón P, Lepp NW (2007) Arsenic in soils and plants of woodland regenerated on an arsenic-contaminated substrate: a sustainable natural remediation? Sci Total Environ 379:256–262. doi: 10.1016/j.scitotenv.2006.08.051 CrossRefGoogle Scholar
  22. Maisto G, Alfani A, Baldantoni D, De Marco A, De Santo AV (2004) Trace metals in the soil and in Quercus ilex L. leaves at anthropic and remote sites of the campania region of Italy. Geoderma 22:269–279. doi: 10.1016/j.geoderma.2004.01.013 CrossRefGoogle Scholar
  23. Marć M, Tobiszewski M, Zabiegała B, de la Guardia M, Jacek N (2015) Current air quality analytics and monitoring: a review. Anal Chim Acta 853:116–126. doi: 10.1016/j.aca.2014.10.018 CrossRefGoogle Scholar
  24. Marques MC, Gravenhorst G, Ibrom A (2001) Input of atmospheric particles into forest stands by dry deposition. Water Air Soil Pollut 130(1–4):571–576. doi: 10.1023/A:1013899032454 CrossRefGoogle Scholar
  25. Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116(3):278–283. doi: 10.1007/s11157-007-9125-4 CrossRefGoogle Scholar
  26. Mingorance MD, Valdés B, Rossini Oliva S (2007) Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int 33:514–520. doi: 10.1016/j.envint.2007.01.005 CrossRefGoogle Scholar
  27. Norouzi S, Khademi H, Cano AF, Acosta JA (2015) Using plane tree leaves for biomonitoring of dust borne heavy metals: a case study from Isfahan, Central Iran. Ecol Indic 57:64–73. doi: 10.1016/j.ecolind.2015.04.011 CrossRefGoogle Scholar
  28. Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Gree 4:115–123. doi: 10.1016/j.ufug.2006.01.007 CrossRefGoogle Scholar
  29. Nujkić MM, Dimitrijević MM, Alagić SČ, Tošić SB, Petrović JV (2016) Impact of metallurgical activities on the content of trace elements in the spatial soil and plant parts of Rubus fruticosus L. Environ Sci Processes Impacts 18:350–360. doi: 10.1039/C5EM00646E CrossRefGoogle Scholar
  30. Official Gazette of Republic Serbia (1994). Regulation about allowable quantities of hazardous and harmful substances in the soil and methods for their investigation, No. 23/94Google Scholar
  31. Pählsson A-MB (1989) Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water Air Soil Pollut 47:287–319. doi: 10.1007/BF00279329 CrossRefGoogle Scholar
  32. Petrova S, Yurukova L, Velcheva I (2014) Possibilities of using deciduous tree species in trace element biomonitoring in an urban area (Plovdiv, Bulgaria). Atmos Pollut Res 5:196–202. doi: 10.5094/APR.2014.024 CrossRefGoogle Scholar
  33. Piczak K, Leśniewicz A, Żyrnicki W (2003) Metal concentrations in deciduous tree leaves from urban areas in Poland. Environ Monit Assess 86:273–287. doi: 10.1023/A:1024076504099 CrossRefGoogle Scholar
  34. Przybysz A, Sæbø A, Hanslin HM, Gawroński SW (2014) Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Sci Total Environ 481:360–369. doi: 10.1016/j.scitotenv.2014.02.072 CrossRefGoogle Scholar
  35. Rademacher P (2001) Atmospheric heavy metals and forest ecosystems, Federal Research Centre for Forestry and Forest Products (BFH), CLRTAPGoogle Scholar
  36. Ram SS, Majumder S, Chaudhuri P, Chanda S, Santra SC, Maiti PK, Sudarshan M, Chakraborty A (2014) Plant canopies: bio-monitor and trap for re-suspended dust particulates contaminated with heavy metals. Mitig Adapt Strateg Glob Change 19:499–508. doi: 10.1007/s11027-012-9445-8 CrossRefGoogle Scholar
  37. Reimann C, Englmaier P, Fabian K, Gough L, Lamothe P, Smith D (2015) Biogeochemical plant–soil interaction: variable element composition in leaves of four plant species collected along a south–north transect at the southern tip of Norway. Sci Total Environ 506–507:480–495. doi: 10.1016/j.scitotenv.2014.10.079 CrossRefGoogle Scholar
  38. Rucandio MI, Petit-Domínguez MD, Fidalgo-Hijano C, García-Giménez R (2011) Biomonitoring of chemical elements in an urban environment using arboreal and bush plant species. Environ Sci Pollut Res 18:51–63. doi: 10.1007/s11356-010-0350-y CrossRefGoogle Scholar
  39. Sæbø A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427–428:347–354. doi: 10.1016/j.scitotenv.2012.03.084 CrossRefGoogle Scholar
  40. Šerbula SM, Antonijević MM, Milosević NM, Milić SM, Ilić AA (2010) Concentrations of particulate matter and arsenic in Bor (Serbia). J Hazard Mater 181:43–51. doi: 10.1016/j.jhazmat.2010.04.065 CrossRefGoogle Scholar
  41. Serbula SM, Miljkovic DD, Kovacevic RM, Ilic AA (2012) Assessment of airborne heavy metal pollution using plant parts and topsoil. Ecotox Environ Safe 76:209–214. doi: 10.1016/j.ecoenv.2011.10.009 CrossRefGoogle Scholar
  42. Serbula SM, Kalinovic TS, Ilic AA, Kalinovic JV, Steharnik MM (2013) Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aerosol Air Qual 13(2):563–573. doi: 10.4209/aaqr.2012.06.0153 CrossRefGoogle Scholar
  43. Serbula SM, Radojevic AA, Kalinovic JV, Kalinovic TS (2014) Indication of airborne pollution by birch and spruce in the vicinity of copper smelter. Environ Sci Pollut Res 21(19):11510–11520. doi: 10.1007/s11356-014-3120-4 CrossRefGoogle Scholar
  44. Sparks DL (2003) Environmental soil chemistry, 2nd edn. Academic Press, AmsterdamGoogle Scholar
  45. Speak AF, Rothwell JJ, Lindley SJ, Smith CL (2012) Urban particulate pollution reduction by four species of green roof vegetation in a UK city. Atmos Environ 61:283–293. doi: 10.1016/j.atmosenv.2012.07.043 CrossRefGoogle Scholar
  46. Sun F, Wen D, Kuang Y, Li J, Li J, Zuo W (2010) Concentrations of heavy metals and polycyclic aromatic hydrocarbons in needles of masson pine (Pinus Massoniana L.) growing nearby different industrial sources. J Environ Sci 22:1006–1013. doi: 10.1016/S1001-0742(09)60211-4 CrossRefGoogle Scholar
  47. Ţenche-Constantinescu AM, Madoşa E, Chira D, Hernea C, Ţenche-Constantinescu RV, Lalescu D, Borlea GF (2015) Tilia spp—Urban Trees for Future. Not Bot Horti Agrobot 43(1):259–264. doi: 10.15835/nbha4319794 CrossRefGoogle Scholar
  48. Tomašević M, Aničić M, Lj Jovanović, Perić-Grujić A, Ristić M (2011) Deciduous tree leaves in trace elements biomonitoring: a contribution to methodology. Ecol Indic 11:1689–1695. doi: 10.1016/j.ecolind.2011.04.017 CrossRefGoogle Scholar
  49. Tošić S, Alagić S, Dimitrijević M, Pavlović A, Nujkić M (2015) Plant parts of the apple tree (Malus spp.) as possible indicators of heavy metal pollution. Ambio 45(4):501–512. doi: 10.1007/s13280-015-0742-9 CrossRefGoogle Scholar
  50. U.S. EPA (U.S. Environmental Protection Agency) (1996) Acid digestion of sediments, sludges, and solids (3050B), Washington, DCGoogle Scholar
  51. Yanqun Z, Yuan L, Schvartz C, Langlade L, Fan L (2004) Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead–zinc mine area, China. Environ Int 30:567–576. doi: 10.1016/j.envint.2003.10.012 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Tanja S. Kalinovic
    • 1
  • Snezana M. Serbula
    • 1
    Email author
  • Jelena V. Kalinovic
    • 1
  • Ana A. Radojevic
    • 1
  • Jelena V. Petrovic
    • 2
  • Mirjana M. Steharnik
    • 2
  • Jelena S. Milosavljevic
    • 1
  1. 1.Technical Faculty in BorUniversity of BelgradeBorSerbia
  2. 2.The Mining and Metallurgy Institute BorBorSerbia

Personalised recommendations