Environmental Earth Sciences

, 76:180 | Cite as

Effect of agrochemicals on macroinvertebrate assemblages in Pampasic streams, Buenos Aires, Argentina

  • Marina SolisEmail author
  • Hernán Mugni
  • Silvia Fanelli
  • Carlos Bonetto
Original Article


Agricultural practices have been intensified in recent decades in Argentina. The Pampa plain is the main agricultural region of the country. The effect of increased application of agrochemicals on the invertebrate fauna of the Pampasic streams remains unreported. In the present study, we compared the abundance and composition of invertebrate assemblages in seven Pampasic streams with contrasting soil use in their basins. Two streams run through intensively cropped plots, two drain basins with livestock fields, while the other three are located within a biosphere Reserve. Higher nutrient and insecticide concentrations were measured in the streams draining cropped basins, related with pesticide applications and crop fertilization. The invertebrate assemblage composition of the cropped streams differed significantly from the others and between the two. Present evidence suggests that the impact of agrochemicals results in a change in composition with decreased abundance or absence of sensitive species such as Hyalellidae, Caenidae, Baetidae and Curculionidae and increased abundance of more tolerant taxa: Ostracoda, Glossiphoniidae (Hirudinea), Ancylidae (Gundlanchia), Ampullariidae (Pomacea canaliculata), Sphaeriidae and Dugesiidae. Available information suggests that macrophyte cover and composition also influence the invertebrate assemblages of the Pampasic streams.


Macroinvertebrate assemblages Pampasic streams Pesticides Nutrients Soil use 



The authors thank the reviewers and the editor for their valuable comments and suggestions. This study was supported by grants from the Agencia Nacional de Promoción Científica y Tecnológica, Argentina; (PICT 2010-0446) and the Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Argentina; (PIP 2011 N° 0180).


  1. Aizen MA, Harder LD (2009) The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr Biol 19:915–918CrossRefGoogle Scholar
  2. APHA (1995) Standard methods for the examination of water and wastewater. American Public Health Association, 19th edn. American Public Health Association, Washington, DCGoogle Scholar
  3. Astoviza MJ, Cappelletti N, Bilos C, Migoya MC, Colombo JC (2015) Massive airborne Endosulfan inputs related to intensive agricultura in Argentina’s Pampa. Chemosphere 144:1459–1466CrossRefGoogle Scholar
  4. Athor J (ed) (2009) Parque Costero del Sur—Naturaleza, conservación y patrimonio cultural. Fundación de Historia Natural “Félix de Azara”. Buenos Aires, p 528Google Scholar
  5. Barry MJ (1996) Effects of an organochlorine pesticide on different levels of biological organization in Daphnia. Ecotoxicol Environ Saf 34:239–251CrossRefGoogle Scholar
  6. CASAFE (2013) Cámara de Sanidad Agropecuaria y Fertilizantes, Buenos Aires, Argentina. Accessed on Nov 2013
  7. Castillo LE, Martinez E, Ruepert C, Savage C, Gilek M, Pinnock M, Solis E (2006) Water quality and macroinvertebrate community response following pesticide applications in a banana plantation, Limon, Costa Rica. Sci Total Environ 367:418–432CrossRefGoogle Scholar
  8. CIAFA (Cámara de la Industria Argentina de Fertilizantes y Agroquímicos) (2016) ( Accessed 18 Feb 2016
  9. Clarke KR, Gorley RN (2001) PRIMER v5: User Manual/Tutorial PRIMER-E: Plymouth Routines in Multivariate Ecological Research, p 91Google Scholar
  10. Clarke KR, Warwick RM (2001) Change in Marine Communities, an approach to statistical analysis and interpretacion, 2nd edn. PRIMER-E: Plymouth Routines in Multivariate Ecological ResearchGoogle Scholar
  11. Dominguez E, Fernandez HR (eds) (2009) Macroinvertebrados bentónicos. Sistemática y biología. 1ª ed. Tucumán. Fundación Miguel Lillo, p 656Google Scholar
  12. Duggan IC, Green JD, Thompson K, Shiel RJ (2001) The influence of macrophytes on the spatial distribution of littoral rotifers. Freshw Biol 46:777–786CrossRefGoogle Scholar
  13. EPD (Environmental Protection Division) (2016) Water Quality Ambient. Water quality criteria for dissolved oxygen. Aquatic life (freshwater, marine and sediment). Government of British Columbia, Canada.
  14. Ferreiro N, Feijoó C, Giorgi A, Rosso J (2014) Macroinvertebrates select complex macrophytes independently of their body size and fish predation risk in a Pampean stream. Hydrobiologia. doi: 10.1007/s10750-014-1953-y CrossRefGoogle Scholar
  15. Gabellone N, Claps M, Solari L, Neschuk N (2005) Nutrients, conductivity and plankton in a landscape approach to a Pampean saline lowland river (Salado River, Argentina). Biogeochemistry 75:455–477CrossRefGoogle Scholar
  16. GFEA-U (2007) Endosulfan. Draft Dossier prepared in support of a proposal of endosulfan to be considered as a candidate for inclusion in the CLRTAP protocol on persistent organic pollutants. German Federal Environment Agency—Umweltbundesamt Berlin.
  17. Hansen JP, Wikstrom SA, Axemar H, Kautsky L (2011) Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquat Ecol 45:11–22CrossRefGoogle Scholar
  18. Hunt L, Bonetto C, Resh VH, Forsin Buss D, Fanelli S, Marrochi N, Lydy MJ (2016) Insecticide concentrations in stream sediments of soy production regions of South America. Sci Total Environ 547:114–124CrossRefGoogle Scholar
  19. Hurtado MA, Giménez JE, Cabral MG (eds) (2006) Análisis ambiental del partido de La Plata: Aportes al ordenamiento territorial, 1ª edn. Buenos Aires, Consejo Federal de Inversiones, p 125Google Scholar
  20. Jarvie HP, Haygarth PM, Neal C, Butler P, Smith B, Naden PS, Joynes A, Neal M, Wickham H, Armstrong L, Harman S, Palmer-Felgate EJ (2008) Stream water and quality along an upland-lowland rural land use continuum, south west England. J Hydrol 350:215–231CrossRefGoogle Scholar
  21. Jergentz S, Mugni H, Bonetto C, Schulz R (2004a) Runoff-related endosulfan contamination and aquatic macroinvertebrate response in rural basins near Buenos Aires, Argentina. Arch Environ Contam Toxicol 46(3):345–353CrossRefGoogle Scholar
  22. Jergentz S, Pessacq P, Mugni H, Bonetto C, Schulz R (2004b) Linking in situ bioassays and dynamics of macroinvertebrates to assess agricultural contamination in streams of the Argentine Pampa. Ecotoxicol Environ Saf 59:133–141CrossRefGoogle Scholar
  23. Jergentz S, Mugni H, Bonetto C, Schulz R (2005) Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere 61(6):817–826CrossRefGoogle Scholar
  24. Leonard A, Hyne V, Lim R, Chapman J (1999) Effect of endosulfan runoff from cotton fields on macroinvertebrates in the Namoi River. Ecotoxicol Environ Saf 42:125–134CrossRefGoogle Scholar
  25. Liess M, Schulz R (1999) Linking insecticide contamination and population response in an agricultural stream. Environ Toxicol Chem 18(9):1948–1955CrossRefGoogle Scholar
  26. Liess M, Von der Ohe P (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24:954–965CrossRefGoogle Scholar
  27. Liess M, Schäfer RB, Schriever CA (2008) The footprint of pesticide stress in communities—species traits reveal community effects of toxicants. Sci Total Environ 406:484–490CrossRefGoogle Scholar
  28. Lorenzen CJ (1967) Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346CrossRefGoogle Scholar
  29. MAGPyA (Ministerio de agroindustria ganadería y pesca) (2016) ( Accesses 9 Feb 2016
  30. Marino D, Ronco A (2005) Cypermethrin and chlorpiryfos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75(4):820–826CrossRefGoogle Scholar
  31. Merritt RW, Cummins KW, Berg MB (eds) (2008) An introduction to the aqugtic insects of North America. Kendall-Hunt, Dubuque, p 1158Google Scholar
  32. Mugni H (2009) Concentración de nutrientes y toxicidad de pesticidas en aguas superficiales de cuencas rurales. Tesis doctoral, Universidad de La Plata, p 140Google Scholar
  33. Mugni H, Ronco A, Bonetto C (2011) Insecticide toxicity to Hyalella curvispina in runoff and stream water within a soybean farm (Buenos Aires, Argentina). Ecotoxicol Environ Saf 74:350–354CrossRefGoogle Scholar
  34. Mugni H, Demetrio P, Paracampo A, Pardi M, Bulus G, Bonetto C (2012) Toxicity Persistence in Runoff Water and Soil in Experimental Soybean Plots Following Chlorpyrifos Application. Bull Environ Contam Toxicol 89:208–212CrossRefGoogle Scholar
  35. Paracampo A, Mugni H, Demetrio P, Pardi M, Bulus G, Asborno M, Bonetto C (2012) Toxicity persistence in runoff from experimental soybean plots following pesticide applications. J Environ Sci Health Part B 47:761–768CrossRefGoogle Scholar
  36. Pengue W (2000) Cultivos transgénicos ¿Hacia dónde vamos?. Lugar Editorial S. A, Buenos Aires, p 190Google Scholar
  37. Schafer RB, Caquet T, Siimes K, Mueller R, Lagadic L, Liess M (2007) Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382:272–285CrossRefGoogle Scholar
  38. Schulz R (2004) Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution: a review. J Environ Qual 33:419–448CrossRefGoogle Scholar
  39. Sokal RR, Rohlf JF (1979) Biometría. Blume, MadridGoogle Scholar
  40. Soldner M, Stephen I, Ramos L, Angus R, Claire Wells N, Grosso A, Crane M (2003) Relationship between macroinvertebrate fauna and environmental variables in small streams of the Dominican Republic. Water Res 38:863–874CrossRefGoogle Scholar
  41. Stehle S, Schulz R (2015) Agricultural insecticides threaten surface waters at the global scale. In: Blais JM (ed) University of Ottawa, Ottawa, Canada, March 2015. CrossRefGoogle Scholar
  42. USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th edn. EPA-821-R-02-012, Washington, DCGoogle Scholar
  43. USEPA (2007) Report on the environment: science report.
  44. USEPA (2007a) Addendum to the ecological risk assessment for Endosulfan, Memorandum to special review and preregistration branch. EPA-HQ-QPP-202-0262-0063.
  45. USEPA (2007b) Note to reader. Endosulfan readers guide. EPA-HQ-OPP-2002-0262-0057Google Scholar
  46. USEPA method 8081 A (1996) Organochlorine pesticides by gas chromatography
  47. Walker PD, Wijnhoven S, van der Velde G (2013) Macrophyte presence and growth form influence macroinvertebrate community structure. Aquat Bot 104:80–87CrossRefGoogle Scholar
  48. Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, Hermanson M, Hung H, Bidleman T (2010) Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ 408:2966–2984CrossRefGoogle Scholar
  49. You J, Weston DP, Lydy MJ (2004) A sonication extraction method for the analysis of pyrethroid, organophosphate, and organochlorine pesticides from sediment by gas chromatography with electron-capture detection. Arch Environ Contam Toxicol 47(2):141–147Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Marina Solis
    • 1
    Email author
  • Hernán Mugni
    • 1
  • Silvia Fanelli
    • 1
  • Carlos Bonetto
    • 1
  1. 1.ILPLA (Instituto de Limnología “Dr. Raúl A. Ringuelet”), UNLP, CONICET, FCNyMLa PlataArgentina

Personalised recommendations