State of the art of karst vulnerability assessment: overview, evaluation and outlook

Abstract

The study gives an overview of the evolution of the concepts and approaches to karst groundwater vulnerability, its connections to previous vulnerability evaluations and of the steps proposed for the assessment. The majority of the methods are based on prerequisites derived from the basic processes of shallow karst systems in the form of transferred parameters. A systematic survey of existing methods and their applications highlights the significance of scale, parameters, its intrinsic or specific and source or resource nature. Revealing the relationships between methods helps to understand their innovations, advantages, disadvantages and the data need. Based on the literature study, the critical examination of the physical reliability of the resulting vulnerability maps and the necessity of their validation is also highlighted. The paper considers the possible and desirable directions for further research, including the development of process-based methods and involvement of an understanding of the flow and transport processes of karstified carbonates. However, the various aspects of water management are not discussed in the present study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Albinet M, Margat J (1970) Cartographie de la vulnerabilité à la pollution des nappes d’eau souterraines. Bull BRGM 2ème série 3(4):13–22

    Google Scholar 

  2. Aller L, Lehr JH, Petty R, Bennett T (1987) Drastic: a standardized system to evaluate groundwater pollution potential using hydrogeologic setting. J Geol Soc India 29:23–37

    Google Scholar 

  3. Andreo B et al (2006) Karst groundwater protection: first application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Libar (Southern Spain). Sci Total Environ 357:54–73. doi:10.1016/j.scitotenv.2005.05.019

    Article  Google Scholar 

  4. Andreo B, Ravbar N, Vias JM (2009) Source vulnerability mapping in carbonate (karst) aquifers by extension of the COP method: application to pilot sites. Hydrogeol J 17:749–758. doi:10.1007/s10040-008-0391-1

    Article  Google Scholar 

  5. Ballesteros D, Malard A, Jeannin PY, Jimenez-Sanchez M, Garcia-Sansegundo J, Melendez-Asensio M, Sendra G (2015) KARSYS hydrogeological 3D modeling of alpine karst aquifers developed in geologically complex areas: Picos de Europa National Park (Spain) Environ. Earth Sci 74:7699–7714. doi:10.1007/s12665-015-4712-0

    Article  Google Scholar 

  6. Barrocu G, Muzzu M, Uras G (2007) Hydrogeology and vulnerability map (Epik method) of the “Supramonte” karstic system, north-central Sardinia. Environ Geol 51:701–706. doi:10.1007/s00254-006-0382-2

    Article  Google Scholar 

  7. Beaujean J, Lemieux J-M, Dassargues A, Therrien R, Brouyère S (2014) Physically based groundwater vulnerability assessment using sensitivity analysis methods. Groundwater 52:864–874. doi:10.1111/gwat.12132

    Article  Google Scholar 

  8. Brosig K, Geyer T, Subah A, Sauter M (2008) Travel time based approach for the assessment of vulnerability of karst groundwater: the Transit Time Method. Environ Geol 54:905–911. doi:10.1007/s00254-007-0898-0

    Article  Google Scholar 

  9. Brouyère S et al (2001) Evaluation and validation of vulnerability concepts using a physically based approach. In: Seventh conference on limestone hydrology and fissured media. Mémoire des Sciences et Techniques de l'Environnement 13. Besançon, France, pp 67–72

  10. Butscher C, Huggenberger P (2008) Intrinsic vulnerability assessment in karst areas: a numerical modeling approach. Water Resour Res. doi:10.1029/2007wr006277

    Google Scholar 

  11. Butscher C, Huggenberger P (2009) Enhanced vulnerability assessment in karst areas by combining mapping with modeling approaches. Sci Total Environ 407:1153–1163. doi:10.1016/j.scitotenv.2008.09.033

    Article  Google Scholar 

  12. Chalikakis K, Plagnes V, Guerin R, Valois R, Bosch FP (2011) Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeol J 19:1169–1180

    Article  Google Scholar 

  13. Cichocki G, Zojer H, Zojer H (2004) Nassfeld, Southern Alps, Austria. In: Zwahlen F (ed) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers. Final report. European Commission, Brussels, pp 230–241

    Google Scholar 

  14. Civita MV (1993) Ground water vulnerability maps: a review. In: Proceedings of the IX symposium on pesticide chemistry degradation and mobility of xenobiotics. Piacenza, 11–13 Oct; Lucca (Biagini), pp 587–631

  15. Civita M, De Maio M (1997) SINTACS: un sistema parametrico per la valutazione e la cartografia delle vulnerabilità degli acquiferi all’inquinamento. Metodologia e automatizzazione. Pitagora Editrice. ISBN:8837108990

    Google Scholar 

  16. Civita M, De Maio M (2000) Valutazione e cartografia automatica della vulnerabilità degli acquiferi all’inquinamento con il sistema parametrico-SINTACS R5-A new parametric system for the assessment and automatic mapping of ground water vulnerability to contamination, vol 72. Pitagora. ISBN: 8837112319

  17. Civita M, De Regibus C (1995) Sperimentazione di alcune metodologie per la valutazione della vulnerabilità degli acquiferi. Atti 2° Conv. Naz. In: protezione e Gestione delle Acque Sotterranee: Metodologie, Tecnologiee Obiett, pp 63–72

  18. COST Action 65 (1995) Hydrogeological aspects of groundwater protection in Karstic Areas: final report. Office for Official Publications of the European Communities

  19. Daly D et al (2002) Main concepts of the “European approach” to karst-groundwater-vulnerability assessment and mapping. Hydrogeol J 10:340–345. doi:10.1007/s10040-001-0185-1

    Article  Google Scholar 

  20. Dassargues A, Popescu C, Brouyère S (2015) Towards processes-based groundwater vulnerability assessments. Paper presented at the 42nd IAH International Congress "Hydrogeology: back to the future”, Roma, 13–18 September 2015

  21. Davis AD, Long AJ, Wireman M (2002) KARSTIC: a sensitivity method for carbonate aquifers in karst terrain. Environ Geol 42:65–72. doi:10.1007/s00254-002-0531-1

    Article  Google Scholar 

  22. Doerfliger N (1996) Advances in karst groundwater protection strategy using artificial tracer tests analysis and multiattribute vulnerabilty mapping (EPIK method): thesis. N. Doerfliger

  23. Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39:165–176

    Article  Google Scholar 

  24. Drew D, Dunne S (2004) Vulnerability mapping for the protection of Karst Aquifers. In: Environment Agency England and Wales, Bristol, R & D Technical Report W6-032/TR, p 99

  25. Ducci D (2007) Intrinsic vulnerability of the Alburni karst system (southern Italy). Geol Soc Lond Spec Publ 279:137–151

    Article  Google Scholar 

  26. Edmonds C (2008) Improved groundwater vulnerability mapping for the karstic chalk aquifer of south east England. Eng Geol 99:95–108. doi:10.1016/j.enggeo.2007.11.019

    Article  Google Scholar 

  27. Farfan H, Corvea JL, de Bustamante I (2014) First outcomes in the definition of groundwater protection zones at the Vinales National Park (Cuba) and surrounding area Environ. Earth Sci 71:3–11. doi:10.1007/s12665-013-2698-z

    Article  Google Scholar 

  28. Farfán-González H, Plagnes V (2013) First outcomes in the application of PaPRIKa method to assess aquifer vulnerability in tropical Karst Mountain: Santo Tomás Watershed—Viñales National Park, Cuba. In: Farfán González H, Corvea Porras JL, de Bustamente Gutiérrez I, LaMoreaux JW (eds) Management of water resources in protected areas. Springer, Berlin Heidelberg, pp 95–101. doi:10.1007/978-3-642-16330-2_11

    Google Scholar 

  29. Filippini M et al (2013) Critical review of methods for assessment of vulnerability of groundwater systems. AGH University of Science and Technology, Krakow

    Google Scholar 

  30. Fiorillo F (2014) The recession of spring hydrographs, focused on karst aquifers. Water Resour Manag 28:1781–1805. doi:10.1007/s11269-014-0597-z

    Article  Google Scholar 

  31. Focazio MJ (2002) Assessing ground-water vulnerability to contamination: providing scientifically defensible information for decision makers, vol 1224. US Dept. of the Interior, US Geological Survey, Denver

    Google Scholar 

  32. Ford D, Williams PD (2007) Karst hydrogeology and geomorphology. Wiley, Hoboken

    Google Scholar 

  33. Foster SSD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: International conference, 1987, Noordwijk Aan Zee, the Netherlands Vulnerability of Soil and Groundwater to Pollutants The Hague, Netherlands Organization for Applied Scientific Research vol 69–86. Oldal: Netherlands Organization for Applied Scientific Research

  34. Foster S, Hirata R, Andreo B (2013) The aquifer pollution vulnerability concept: aid or impediment in promoting groundwater protection? Hydrogeol J 21:1389–1392

    Article  Google Scholar 

  35. Gabrielsen P, Bosch P (2003) Environmental indicators: typology and use in reporting. EEA, Copenhagen

    Google Scholar 

  36. Ghasemizadeh R, Hellweger F, Butscher C, Padilla I, Vesper D, Field M, Alshawabkeh A (2012) Review: groundwater flow and transport modeling of karst aquifers, with particular reference to the North Coast Limestone aquifer system of Puerto Rico. Hydrogeol J 20:1441–1461. doi:10.1007/s10040-012-0897-4

    Article  Google Scholar 

  37. Gogu RC (2000) Advances in groundwater protection strategy using vulnerability mapping and hydrogeological GIS databases. Ph.D. Thesis, University of Liège

  38. Gogu RC, Dassargues A (2000a) Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ Geol 39:549–559

    Article  Google Scholar 

  39. Gogu RC, Dassargues A (2000b) Sensitivity analysis for the EPIK method of vulnerability assessment in a small karstic aquifer, southern Belgium. Hydrogeol J 8:337–345. doi:10.1007/s100400000068

    Article  Google Scholar 

  40. Gogu RC, Hallet V, Dassargues A (2003) Comparison of aquifer vulnerability assessment techniques: application to the Neblon river basin (Belgium). Environ Geol 44:881–892. doi:10.1007/s00254-003-0842-x

    Article  Google Scholar 

  41. Goldscheider N (2002) Hydrogeology and vulnerability of karst systems: examples from the Northern Alps and the Swabian Alb. Univ., Diss, Karlsruhe, p 2002

    Google Scholar 

  42. Goldscheider N (2004) The concept of groundwater vulnerability.  In: Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report (COST action 620) Report EUR 20912

  43. Goldscheider N (2005) Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany. Hydrogeol J 13:555–564. doi:10.1007/s10040-003-0291-3

    Article  Google Scholar 

  44. Goldscheider N, Drew D (2007) Methods in Karst hydrogeology: IAH—international contributions to hydrogeology, 26. CRC Press, Boca Raton

    Google Scholar 

  45. Goldscheider N, Klute M, Sturm S, Hötzl H (2000) The PI method—a GIS-based approach to mapping groundwater vulnerability with special consideration of karst aquifers. Z Angew Geol 46:157–166

    Google Scholar 

  46. Gunn J (1986) A conceptual model for conduit flow dominated karst aquifers. IAHS-AISH publication, pp 587–596. ISSN: 0144–7815

  47. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242. doi:10.1002/2013RG000443

    Article  Google Scholar 

  48. Hölting B, Haertlé T, Hohberger K, Nachtigall K, Villinger E, Weinzierl W, Wrobel J (1995) Konzept zur Ermittlung der Schutzfunktion der Grundwasserüberdeckung. Geologisches Jahrbuch Series C, No. 63. Schweizerbartsche Verlagsbuchhandlung, Stuttgart

  49. Huan H, Wang J, Lai D, Teng Y, Zhai Y (2014) Assessment of well vulnerability for groundwater source protection based on a solute transport model: a case study from Jilin City, northeast China. Hydrogeol J. doi:10.1007/s10040-014-1211-4

    Google Scholar 

  50. Huneau F, Jaunat J, Kavouri K, Plagnes V, Rey F, Dorfliger N (2013) Intrinsic vulnerability mapping for small mountainous karst aquifers, implementation of the new PaPRIKa method to Western Pyrenees (France). Eng Geol 161:81–93. doi:10.1016/j.enggeo.2013.03.028

    Article  Google Scholar 

  51. Iancu O, Mihai P, Daniel S (2007) Intrinsic vulnerability of Coteul Dobrestilor karst aquifer (Bihor Mountain, Romania). Environ Geol 51:713–718. doi:10.1007/s00254-006-0385-z

    Article  Google Scholar 

  52. Jeannin P-Y, Cornaton F, Zwahlen F, Perrochet P (2001) VULK: a tool for intrinsic vulnerability assessment and validation. Sciences et techniques de l’environnement Mémoire hors-série, pp 185–190. ISSN:1626-4746

  53. Jeannin PY, Eichenberger U, Sinreich M, Vouillamoz J, Malard A, Weber E (2013) KARSYS: a pragmatic approach to karst hydrogeological system conceptualisation. Assessment of groundwater reserves and resources in Switzerland. Environ Earth Sci 69:999–1013. doi:10.1007/s12665-012-1983-6

    Article  Google Scholar 

  54. Jimenez-Madrid A, Carrasco-Cantos F, Martinez-Navarrete C (2012) Protection of groundwater intended for human consumption: a proposed methodology for defining safeguard zones. Environ Earth Sci 65:2391–2406. doi:10.1007/s12665-011-1494-x

    Article  Google Scholar 

  55. Jimenez-Madrid A, Carrasco F, Martinez C, Gogu RC (2013) DRISTPI, a new groundwater vulnerability mapping method for use in karstic and non-karstic aquifers. Q J Eng Geol Hydrogeol 46:245–255. doi:10.1144/qjegh2012-038

    Article  Google Scholar 

  56. Kattaa B, Al-Fares W, Al Charideh AR (2010) Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method. J Environ Manag 91:1103–1110. doi:10.1016/j.jenvman.2009.12.008

    Article  Google Scholar 

  57. Kavouri K, Plagnes V, Tremoulet J, Dorfliger N, Rejiba F, Marchet P (2011) PaPRIKa: a method for estimating karst resource and source vulnerability-application to the Ouysse karst system (southwest France). Hydrogeol J 19:339–353. doi:10.1007/s10040-010-0688-8

    Article  Google Scholar 

  58. Koutsi R, Stournaras G (2011) Groundwater vulnerability assessment in the Loussi polje area, N Peloponessus: the PRESK method. Advances in the research of aquatic environment. Springer, New York, pp 335–342

    Google Scholar 

  59. Kovačič G, Ravbar N (2015) Validation of vulnerability assessment using time series analysis—the case of the Korentan Spring, SW Slovenia. In: Andreo B, Carrasco F, Durán JJ, Jiménez P, LaMoreaux WJ (eds) Hydrogeological and environmental investigations in karst systems. Springer, Berlin, pp 415–424. doi:10.1007/978-3-642-17435-3_47

    Google Scholar 

  60. Kralik M, Keimel T (2003) Time-input, an innovative groundwater-vulnerability assessment scheme: application to an alpine test site. Environ Geol 44:679–686. doi:10.1007/s00254-003-0809-y

    Article  Google Scholar 

  61. Kresic N (2012) Water in karst: management, vulnerability, and restoration: management, vulnerability, and restoration. Mcgraw-Hill, New York

    Google Scholar 

  62. Laimer H (2005) Die Erfassung der Karstgrundwasser-Vulnerabilität mit der Methode „VURAAS“. Grundwasser 10:167–176. doi:10.1007/s00767-005-0093-8

    Article  Google Scholar 

  63. Madl-Szonyi J, Fule L (1998) Groundwater vulnerability assessment of the SW trans-Danubian central range, Hungary. Environ Geol 35:9–18

    Article  Google Scholar 

  64. Mádl-Szőnyi J, Tóth Á (2015) Basin-scale conceptual groundwater flow model for an unconfined and confined thick carbonate region. Hydrogeol J 23:1359–1380

    Article  Google Scholar 

  65. Magiera P (2000) Methoden zur Abschätzung der Verschmutzungsempfindlichkeit des Grundwassers. Grundwasser 5:103–114. doi:10.1007/s767-000-8357-1

    Article  Google Scholar 

  66. Malík P (2007) Assessment of regional karstification degree and groundwater sensitivity to pollution using hydrograph analysis in the Velka Fatra Mountains, Slovakia. Environ Geol 51:707–711. doi:10.1007/s00254-006-0384-0

    Article  Google Scholar 

  67. Malík P, Svasta J (1999) REKS- An alternative method of karst groundwater vulnerability estimation. Paper presented at the Hydrogeology and Land Use Management, Bratislava, January 1999. doi:10.13140/2.1.2919.7766  

  68. Malík P, Vojtková S (2009) Groundwater vulnerability assessment using physical principles of contamination spreading. In: Illangasekare T, Mahutova K, Barich J III (eds) Decision support for natural disasters and intentional threats to water security. NATO science for peace and security series C: environmental security. Springer, The Netherlands, pp 199–211. doi:10.1007/978-90-481-2713-9_14

    Google Scholar 

  69. Malík P, Vojtková S (2007) Physically-based intrinsic groundwater resource vulnerability map of the Tisovec karst. Groundw Vulnerability Assess Mapp IAH Sel Pap Hydrogeol 11:223–234

    Google Scholar 

  70. Malík P, Vojtková S (2012) Use of recession-curve analysis for estimation of karstification degree and its application in assessing overflow/underflow conditions in closely spaced karstic springs. Environ Earth Sci 65:2245–2257. doi:10.1007/s12665-012-1596-0

    Article  Google Scholar 

  71. Malík P, Fendek M, Vrana K, Witkowski A (1998) Groundwater vulnerability map of the Muránska Planina Plateau. In: Gambling with groundwater: physical, chemical, and biological aspects of aquifer—stream relations, proceedings of the XXVIII congress of the international association of hydrogeologists, Las Vegas, pp 623–628

  72. Malík P, Švasta J, Michalko J, Gregor M (2016) Indicative mean transit time estimation from δ18O values as groundwater vulnerability indicator in karst-fissure aquifers. Environ Earth Sci 75:1–12. doi:10.1007/s12665-016-5791-2

    Article  Google Scholar 

  73. Marín AI, Andreo B, Mudarra M (2010) Importance of evaluating karst features in contamination vulnerability and groundwater protection assessment of carbonate aquifers. The case study of Alta Cadena (Southern Spain). Z Geomorphol 54:179–194. doi:10.1127/0372-8854/2010/0054s2-0010

    Article  Google Scholar 

  74. Marín AI, Dorfliger N, Andreo B (2012) Comparative application of two methods (COP and PaPRIKa) for groundwater vulnerability mapping in Mediterranean karst aquifers (France and Spain). Environ Earth Sci 65:2407–2421. doi:10.1007/s12665-011-1056-2

    Article  Google Scholar 

  75. Marín A, Ravbar N, Kovačič G, Andreo B, Petrič M (2014) Application of methods for resource and source vulnerability mapping in the orehek karst aquifer, SW Slovenia. In: Mudry J, Zwahlen F, Bertrand C, LaMoreaux JW (eds) H2Karst research in limestone hydrogeology. Springer, New York, pp 139–150. doi:10.1007/978-3-319-06139-9_10

    Google Scholar 

  76. Marín AI, Andreo B, Mudarra M (2015) Vulnerability mapping and protection zoning of karst springs. Validation by multitracer tests. Sci Total Environ 532:435–446. doi:10.1016/j.scitotenv.2015.05.029

    Article  Google Scholar 

  77. McGrath R, Styles P, Thomas E, Neale S (2002) Integrated high-resolution geophysical investigations as potential tools for water resource investigations in karst terrain. Environ Geol 42:552–557. doi:10.1007/s00254-001-0519-2

    Article  Google Scholar 

  78. Mimi ZA, Assi A (2009) Intrinsic vulnerability, hazard and risk mapping for karst aquifers: a case study. J Hydrol 364:298–310. doi:10.1016/j.jhydrol.2008.11.008

    Article  Google Scholar 

  79. Molson JW, Frind EO (2012) On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection. J Contam Hydrol 127:76–87. doi:10.1016/j.jconhyd.2011.06.001

    Article  Google Scholar 

  80. Neukum C (2013) Overview on methods and applications for the validation of vulnerability assessments. Grundwasser 18:15–24. doi:10.1007/s00767-012-0201-5

    Article  Google Scholar 

  81. Neukum C, Azzam R (2009) Quantitative assessment of intrinsic groundwater vulnerability to contamination using numerical simulations. Sci Total Environ 408:245–254. doi:10.1016/j.scitotenv.2009.09.046

    Article  Google Scholar 

  82. Neukum C, Hotzl H, Himmelsbach T (2008) Validation of vulnerability mapping methods by field investigations and numerical modelling. Hydrogeol J 16:641–658. doi:10.1007/s10040-007-0249-y

    Article  Google Scholar 

  83. Nguyet VTM, Goldscheider N (2006) A simplified methodology for mapping groundwater vulnerability and contamination risk, and its first application in a tropical karst area, Vietnam. Hydrogeol J 14:1666–1675. doi:10.1007/s10040-006-0069-5

    Article  Google Scholar 

  84. Pavlis M, Cummins E (2014) Assessing the vulnerability of groundwater to pollution in Ireland based on the COST-620 Pan-European approach. J Environ Manag 133:162–173. doi:10.1016/j.jenvman.2013.11.044

    Article  Google Scholar 

  85. Perrin J, Pochon A, Jeannin PY, Zwahlen F (2004) Vulnerability assessment in karstic areas: validation by field experiments. Environ Geol 46:237–245. doi:10.1007/s00254-004-0986-3

    Article  Google Scholar 

  86. Petelet-Giraud E, Doerfliger N, Crochet P (2000) RISKE: multicriteria assessment of karstic aquifer vulnerability mapping. Application to the Fontanilles and Cent-Fonts karstic aquifers (Herault, S. France). Hydrogéologie 4:71–88

    Google Scholar 

  87. Plagnes V, Théry S, Fontaine L, Bakalowicz M, Dörfliger N (2005) Karst vulnerability mapping: Improvement of the RISKE method. In: KARST 2005 water resources and environmental problems in karst, pp 14–19

  88. Plagnes V et al (2010) PaPRIKa, the French multicriteria method for mapping the intrinsic vulnerability of karst water resource and source: two examples (Pyrenees, Normandy). In: Andreo B, Carrasco F, Durán JJ, LaMoreaux JW (eds) Advances in research in karst media. Springer, Berlin Heidelberg, pp 323–328. doi:10.1007/978-3-642-12486-0_50

    Google Scholar 

  89. Plan L, Decker K, Faber R, Wagreich M, Grasemann B (2009) Karst morphology and groundwater vulnerability of high alpine karst plateaus. Environ Geol 58:285–297. doi:10.1007/s00254-008-1605-5

    Article  Google Scholar 

  90. Pochon A, Sinreich M, Digout M, Zwahlen F (2004) Vaulion test site, Jura Mountains, Switzerland. In: Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report (COST action 620) Report EUR 20912

  91. Polemio M, Casarano D, Limoni PP (2009) Karstic aquifer vulnerability assessment methods and results at a test site (Apulia, southern Italy). Nat Hazard Earth Syst 9:1461–1470

    Article  Google Scholar 

  92. Popescu IC, Gardin N, Brouyère S, Dassargues A (2008) Groundwater vulnerability assessment using physically based modelling: from challenges to pragmatic solutions. In: Calibration and reliability in groundwater modelling: credibility in modelling

  93. Popescu C, Brouyère S, Orban P, Dassargues A (2015) Process-based method for groundwater resource vulnerability mapping with regards to solute contamination at the surface. In: International conference on groundwater vulnerability-from scientific concepts to practical applications

  94. Quiers M, Batiot-Guilhe C, Bicalho C, Perrette Y, Seidel JL, Van Exter S (2014) Characterisation of rapid infiltration flows and vulnerability in a karst aquifer using a decomposed fluorescence signal of dissolved organic matter. Environ Earth Sci 71:553–561. doi:10.1007/s12665-013-2731-2

    Article  Google Scholar 

  95. Ravbar N (2007) The protection of karst waters: a comprehensive slovene approach to vulnerability and contamination risk mapping. Inštitut za raziskovanje krasa ZRC SAZU. ISBN: 9789612540104

  96. Ravbar N (2013) Variability of groundwater flow and transport processes in karst under different hydrologic conditions/Spremenljivost Pretakanja Voda in Prenosa Snovi V Krasu ob Razlicnih Hidroloskih Pogojih. Acta Carsol 42:327–338

    Article  Google Scholar 

  97. Ravbar N, Goldscheider N (2007) Proposed methodology of vulnerability and contamination risk mapping for the protection of karst aquifers in Slovenia. Acta Carsol 36:397–411

    Article  Google Scholar 

  98. Ravbar N, Goldscheider N (2009) Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment. Hydrogeol J 17:725–733. doi:10.1007/s10040-008-0368-0

    Article  Google Scholar 

  99. Ravbar N, Kovacic G (2010) Characterisation of karst areas using multiple geo-science techinques, a case study from Sw Slovenia. Acta Carsol 39:51–60

    Article  Google Scholar 

  100. Sinreich M (2014) Contaminant attenuation in karst aquifers: a paradigm shift. H2Karst research in limestone hydrogeology. Springer, New York, pp 175–184

    Google Scholar 

  101. Sinreich M, Pochon A (2015) Standardized approach for conducting tracing tests in order to validate and refine vulnerability mapping criteria. In: Andreo B, Carrasco F, Durán JJ, Jiménez P, LaMoreaux WJ (eds) Hydrogeological and environmental investigations in karst systems. Springer, Berlin, pp 131–137. doi:10.1007/978-3-642-17435-3_15

    Google Scholar 

  102. Sinreich M, Cornaton F, Zwahlen F (2007) Evaluation of reactive transport parameters to assess specific vulnerability in karst systems. IAH-SP 11:21–31

    Google Scholar 

  103. Stempvoort DV, Ewert L, Wassenaar L (1993) Aquifer vulnerability index: a GIS-compatible method for groundwater vulnerability mapping. Can Water Resour J 18:25–37

    Article  Google Scholar 

  104. Stevanovic Z (2015) Karst aquifers: characterization and engineering. Springer, New York

    Google Scholar 

  105. Turk J et al (2013) Interpretation of hydrogeological functioning of a high karst plateau using the karsys approach: the case of Trnovsko-Banjska Planota (Slovenia). Acta Carsol 42:61–74

    Article  Google Scholar 

  106. Van Beynen PE (2011) Karst management. Springer, New York

    Google Scholar 

  107. Vias JM, Andreo B, Perles MJ, Carrasco F (2005) A comparative study of four schemes for groundwater vulnerability mapping in a diffuse flow carbonate aquifer under Mediterranean climatic conditions. Environ Geol 47:586–595. doi:10.1007/s00254-004-1185-y

    Article  Google Scholar 

  108. Vias JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jimenez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14:912–925. doi:10.1007/s10040-006-0023-6

    Article  Google Scholar 

  109. Von Hoyer M, Sofner B (1998) Groundwater vulnerability mapping in carbonate (karst) areas of Germany. Federal institute for geosciences and natural resources, Archive

  110. Vrba J, Zaporožec A (eds) (1994) Guidebook on mapping groundwater vulnerability. International contributions to hydrogeology, vol 16. Verlag Hienz Heise, Hannover

    Google Scholar 

  111. Vuilleumier C, Borghi A, Renard P, Ottowitz D, Schiller A, Supper R, Cornaton F (2013) A method for the stochastic modeling of karstic systems accounting for geophysical data: an example of application in the region of Tulum, Yucatan Peninsula (Mexico). Hydrogeol J 21:529–544. doi:10.1007/s10040-012-0944-1

    Article  Google Scholar 

  112. Wachniew P et al (2016) Toward operational methods for the assessment of intrinsic groundwater vulnerability: a review. Crit Rev Environ Sci Technol 46:827–884. doi:10.1080/10643389.2016.1160816

    Article  Google Scholar 

  113. Wei X, Pu J, Zhao C (2014) Assessment of karst groundwater vulnerability in Chongqing based on revised RISKE model Shengtai Xuebao. Acta Ecol Sin 34:589–596. doi:10.5846/stxb201210301504

    Google Scholar 

  114. WFD E (2000) Directive 2000/60/EC of the European parliament and of the council establishing a framework for the community action in the field of water policy. The European Parliament and the Council of the European Union, Brussels

    Google Scholar 

  115. Witkowski AJ, Rubin K, Kowalczyk A, Rózkowski A, Wróbel J (2003) Groundwater vulnerability map of the Chrzanów karst-fissured Triassic aquifer (Poland). Environ Geol 44:59–67

    Google Scholar 

  116. Witkowski AJ, Kowalczyk A, Vrba J (2007) Groundwater vulnerability assessment and mapping: IAH-selected papers. Taylor & Francis, Milton Park

    Google Scholar 

  117. Yu C, Yao YY, Hayes G, Zhang BX, Zheng CM (2010) Quantitative assessment of groundwater vulnerability using index system and transport simulation, Huangshuihe catchment, China. Sci Total Environ 408:6108–6116. doi:10.1016/j.scitotenv.2010.09.002

    Article  Google Scholar 

  118. Zaporožec A (1989) Hydrogeologic mapping for groundwater protection. In: Moore JE (ed) Recent advances in groundwater hydrology. American Institute of Hydrology, Minneapolis, pp 588–597

    Google Scholar 

  119. Zhang Q (2014) An assessment of groundwater resource vulnerability to pollution in the Jiangjia spring basin, China. Environ Earth Sci. doi:10.1007/s12665-014-3732-5

    Google Scholar 

  120. Zhang C, Lettingue M, Jiang Y, Wang S (2007) Duality method for assessing karst groundwater vulnerability and its application in Jinfo mountain of Chongqing. Zhongguo Yanrong Carsol Sin 26:334–340

    Google Scholar 

  121. Živanović V, Jemcov I, Dragišić V, Atanacković N, Magazinović S (2016) Karst groundwater source protection based on the time-dependent vulnerability assessment model: crnica springs case study, Eastern Serbia. Environ Earth Sci 75:1–13. doi:10.1007/s12665-016-6018-2

    Article  Google Scholar 

  122. Zwahlen F (2004) Vulnerability and risk mapping for the protection of carbonate (karst) aquifers, final report (COST action 620). European Commission, Directorate-General XII Science, vol 297

Download references

Acknowledgements

This article belongs to a series of “Reviews in Karst Hydrogeology” promoted by the IAH Karst Commission (www.iah.org/karst) with the goal to collect and evaluate current knowledge in different fields of karst hydrogeology and make it available to the scientific community. The authors would like to thank all of the researchers who offered their views and knowledge regarding vulnerability. The impact of their contribution on the development of the concept of karst vulnerability can be followed in this review paper. The authors of the paper would like to acknowledge the support of the Hungarian OTKA Research Fund (NK 101356).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Veronika Iván.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iván, V., Mádl-Szőnyi, J. State of the art of karst vulnerability assessment: overview, evaluation and outlook. Environ Earth Sci 76, 112 (2017). https://doi.org/10.1007/s12665-017-6422-2

Download citation

Keywords

  • Vulnerability
  • Karst
  • Carbonate aquifer
  • Methods
  • Application
  • Overview