Skip to main content

Thermo-mechanical investigation of salt caverns for short-term hydrogen storage

Abstract

To investigate the temperature influence on the cavern capacity, a numerical model was developed in order to simulate the thermo-mechanical behaviour of salt caverns during cyclic hydrogen storage. The model considers the thermodynamic characteristics of the storage medium as well as the heat transport and the temperature-dependent material properties of the host rock. Therefore, a well-known visco-elastic constitutive model was modified to describe temperature effects of rock salt and implemented into the freely available simulator OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, connected via a staggered coupling scheme. Numerical analyses were performed and evaluated using basic criteria for cavern safety and convergence. The results show that large temperature amplitudes in the working gas may lead to tensile stresses at the cavern boundary. Reducing the frequency of the cyclic loading is a way to reduce temperature variations and to avoid tensile failure. Furthermore, the influence of cavern shape was investigated. Narrow cylindrical caverns converge faster than spherical ones of the same volume and are subjected to a higher risk of structural failure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Notes

  1. Advanced adiabatic compressed air energy storage.

References

  • Bérest P (2011) Thermomechanical aspects of high frequency cycling in salt storage caverns. In: International gas union research conference, Seoul, South Korea

  • Böttcher N, Maßmann J, Vogel P, Nagel T (2016) Deformation processes. In: Kolditz O et al (eds) Thermo-hydro-mechanical-chemical processes in fractured porous media: modelling and benchmarking: benchmarking initiatives, terrestrial environmental sciences. Springer, Berlin

    Google Scholar 

  • Crotogino F, Quast P (1981) Compressed-air storage caverns at Huntorf. In: Bergman M (ed) Subsurface space. Pergamon Press, Pergamon, pp 593–600

    Chapter  Google Scholar 

  • Deng JQ, Yang Q, Liu YR, Pan YW (2015) Stability evaluation and failure analysis of rock salt gas storage caverns based on deformation reinforcement theory. Comput Geotech 68:147–160

    Article  Google Scholar 

  • Du C, Yang C, Yao Y, Li Z, Chen J (2012) Mechanical behaviour of deep rock salt under the operational conditions of gas storage. Int J Earth Sci Eng 5(6):1670–1676

    Google Scholar 

  • Forsberg CW (2006) Assessment of nuclear-hydrogen synergies with renewable energy systems and coal liquefaction processes. Oak Ridge National Laboratory

  • Heusermann S, Lux K-H, Rokahr RB (1983) Entwicklung mathematisch-mechanischer Modelle zur Beschreibung des Stoffverhaltens von Steinsalz in Abhängigkeit von der Zeit und der Temperatur auf der Grundlage von Laborversuchen mit begleitenden kontinuumsmechanischen Berechnungen nach der Methode der finiten Elemente.Forschungsbericht T 83-218 Technologische Forschung und Entwicklung-Nichtnukleare Energietechnik, Bundesministerium für Forschung und Technologie

  • Heusermann S, Rolfs O, Schmidt U (2003) Nonlinear finite element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive Model. Comput Struct J 81:629–638

    Article  Google Scholar 

  • IEA (2012) Operating flexibility of power plants with CCS. International Energy Agency Greenhouse Gas R&D Report 2012/6

  • Khaledi K, Mahmoudi E, Datcheva M, Schanz T (2016) Stability and serviceability of underground energy storage caverns in rock salt subjected to mechanical cyclic loading. Int J Rock Mech Min Sci 86:115–131

    Google Scholar 

  • Kolditz O, Görke UJ, Shao H, Wang W (2012) Thermo-hydro-mechanical–chemical processes in porous media: benchmarks and examples. Lecture notes in computational science and engineering. Springer, Berlin

  • Lemmon EW, Huber ML, Leachman JW (2008) Revised standardized equation for hydrogen gas densities for fuel consumption applications. J Res Natl Inst Stand Technol 113(6):341–350

    Article  Google Scholar 

  • Leuger B, Staudtmeister K, Zapf D (2012) The thermo-mechanical behavior of a gas storage cavern during high frequency loading. In: Bérest et al (eds) Mechanical behaviour of Salt VII. Taylor&Francis Group, London, pp 363–369

    Google Scholar 

  • Nagel T, Böttcher N (2015) Mechanical processes. In: Kolditz O et al (eds) Thermo-hydro-mechanical-chemical processes in fractured porous media: modelling and benchmarking: closed-form solutions, terrestrial environmental sciences. Springer, Berlin

    Google Scholar 

  • Nagel T, Minkley M, Böttcher N, Naumov D, Görke U-J, Kolditz O (2017) Implicit numerical integration and consisection were scheduled in a way thatstent linearization of inelastic constitutive models of rock salt. Comput Struct 182:87–103

    Article  Google Scholar 

  • PowerSouth Energy Cooperative ( 2010) McIntosh Power Plant. Brochure. URL: http://www.powersouth.com/files/McIntosh%20Brochure%20[FINAL].pdf

  • Ramdohr H (1964) Schrifttumsübersicht über Endlagerung radioaktiver Abfallstoffe in Salzformationen. Ges für Kernforschung m.b.H. Karlsruhe

  • Rutqvist J, Kim H-M, Ryu D-W, Synn J-H, Song W-K (2012) Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns. Int J Rock Mech Min Sci 52:71–81

    Article  Google Scholar 

  • Serbin K, Ślizowski J, Urbańczyk K, Nagy S (2015) The influence of thermodynamic effects on gas storage cavern convergence. Int J Rock Mech Min Sci 79:166–171

    Google Scholar 

  • Sriapai T, Walsri C, Fuenkajorn K (2012) Effect of temperature on compressive and tensile strengths of salt. Sci Asia 2:166–174

    Article  Google Scholar 

  • Simon J, Ferriz AM, Correas LC (2015) HyUnder - hydrogen underground storage at large scale: case study Spain. In: Energy procedia 73, 9th international renewable energy storage conference. IRES, pp 136–144

  • Urai JL, Schleder Z, Spiers C, Kukla PA (2008) Flow properties transport of salt rocks. In: Littke R et al (eds) Dynamics of complex intracontinental basins: The central European basin system. Springer, Berlin

    Google Scholar 

  • van Eijs RMHE, Pottgens JJE, Breunese JN, Duquesnoy AJHM (2000) High convergence rates during deep salt solution mining in the northern part of The Netherlands. World Salt Symp 1:237–242

    Google Scholar 

  • Wang G, Guo K, Christianson M, Konietzky H (2011) Deformation characteristics of rock salt with mudstone interbeds surrounding gas and oil storage cavern. Int J Rock Mech Min Sci 48(6):871–877

    Article  Google Scholar 

  • Xia C, Zhou Y, Zhou S, Zhang P, Wang F (2015) A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns. Renew Energy 74:718–726

    Article  Google Scholar 

  • Zapf D, Staudtmeister K, Rokahr RB (2012) Analysis of thermal induced fractures in salt. SMRI Spring Technical Meeting, Regina, 22–15 April 2012, pp 47-62

  • Zhang G, Wu Y, Wang L, Zhang K, Daemen JJK, Liu W (2015) Time-dependent subsidence prediction model and influence factor analysis for underground gas storages in bedded salt formations. Eng Geol 187:156–169

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Federal Ministry of Education and Research of Germany (BMBF) under Grant No. 03EK3022B (ANGUS+ project). The authors would like to thank the two anonymous reviewers for their constructive comments on the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Böttcher.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on ‘Subsurface Energy Storage’, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Böttcher, N., Görke, UJ., Kolditz, O. et al. Thermo-mechanical investigation of salt caverns for short-term hydrogen storage. Environ Earth Sci 76, 98 (2017). https://doi.org/10.1007/s12665-017-6414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-017-6414-2

Keywords

  • Rock salt caverns
  • Renewable energy storage
  • Hydrogen storage
  • Thermo-mechanical modelling
  • OpenGeoSys