Skip to main content
Log in

Natural radionuclide concentrations in thermal springs of east Algeria

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The variation of the natural radionuclide concentrations depends on the chemical composition of each site. In this work, two thermal springs in the east of Algeria have been chosen to assess the activity concentration of natural radionuclide, mainly the three natural radioactive series 238U, 235U and 232Th, and 40K. The high-resolution gamma ray spectroscopy was used to determine these concentrations. In these water samples, 235U, 234Th, 210Pb, 226Ra radionuclides are less than the minimum detectable activity. The activity of 238U is dominant. The 238U activity was determined by taking the mean activity of two separate photo-peaks of daughter nuclides 214Pb at 351.92 (37.2%) keV and 214Bi at 609.31 (45%) keV. The measured activity concentrations of 238U in water samples obtained from the concentrations of 214Bi and 214Pb ranged from 0.56 ± 0.20 to 1.13 ± 0.20 Bq/L. The annual effective dose value due to the ingestion of the measured radionuclide 238U in 1 L of water, for an adult, ranged from 9.20 to 18.56 µSv.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd El-Mageed AI, El Kamel AEH, Abd El-Bast A, Abbady AEB, Saleh II (2013) Natural radioactivity of ground and hot spring water in some areas in Yemen. Desalination 321:28–31. doi:10.1016/j.desal.2011.11.022

    Article  Google Scholar 

  • Argus DF, Gordon RG, DeMets C, Stein S (1989) Closure of the Africa–Eurasia–North America plate motions circuit and tectonic of the Gloria fault. J Geophys Res 94:5585–5602. doi:10.1029/JB094iB05p05585

    Article  Google Scholar 

  • Auzende JM, Bonnin J, Olivet JL (1973) The origin of the western Mediterranean Basin. J Geol Soc Lond 129:607–620. doi:10.1144/gsjgs.129.6.0607

    Article  Google Scholar 

  • Bartarya SK (1993) Hydrochemistry and rock weathering in a subtropical lesser Himalayan river basin in Kumaun, India. J Hydrol 146:149–174

    Article  Google Scholar 

  • Buforn E, Sanz de Galdeano C, Udias A (1995) Seismotectonics of the Ibero-Maghrebian region. Tectonophysics 248:247–261. doi:10.1016/0040-1951(94)00276-F

    Article  Google Scholar 

  • Buket C, Füsun Caml N, Günseli Y, Osman C (2010) Natural radioactivity (226Ra, 232Th and 40K) and assessment of radiological hazard in the Kestanbol granitoid, Turkey. Radiat Prot Dosim 141:192–198

    Article  Google Scholar 

  • Calais E, Demets C, Nocquet JM (2003) Evidence for a post—3.16 Ma change in Nubia–Eurasia plate motion? Earth Planet Sci Lett 216:81–92. doi:10.1016/S0012-821X(03)00482-5

    Article  Google Scholar 

  • Chau ND, Michalec B (2009) Natural radioactivity in the bottled natural spring mineral and therapeutic waters in Poland. J Radioanal Nucl Chem 279:121–129

    Article  Google Scholar 

  • Domenico PA (1972) Concepts and models in groundwater hydrology. International series in the earth and planetary sciences, 1st edn. McGraw-Hill Inc, US

    Google Scholar 

  • El-Taher A, Uosif MAM, Orabi AA (2007) Natural radioactivity levels and radiation hazard indices in granite from Aswan to Wadi El-Allaqi southeastern desert, Egypt. Radiat Prot Dosim 124:148–154. doi:10.1093/rpd/ncm211

    Article  Google Scholar 

  • Fabre J (1976) Introduction à la géologie du l’Algérie et des régions voisines. Société Nationale d’Édition et de Diffusion, Alger (in French)

    Google Scholar 

  • Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F (2004) Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics 23:TC1012. doi:10.1029/2002TC001488

    Article  Google Scholar 

  • Firestone RB, Shirley VS, Baglin CM, Chu SYF, Zipkin J (1996) The 8th edition of the Table of Isotopes. Wiley, New York

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Frizon de Lamotte D, Saint Bezar B, Bracène R, Mercier E (2000) The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics 19:740–761. doi:10.1029/2000TC900003

    Article  Google Scholar 

  • ICRP (1991). 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60 (Users Edition)

  • International Atomic Energy Agency (IAEA) (1989) Construction and use of calibration facilities for radiometric field equipment: Technical reports, series no 309. IAEA, Vienna

  • Jacks G (1973) Chemistry of groundwater in a district in southern India. J Hydrol 18:185–200. doi:10.1016/0022-1694(73)90047-4

    Article  Google Scholar 

  • Khater AEM (2003) Radiological aspects of some Egyptian thermo-mineral springs. J Environ Monit 5:414–418. doi:10.1039/B301046E

    Article  Google Scholar 

  • Kumar M, Ramanathan AL, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. J Environ Geol 50:1025–1039. doi:10.1007/s002554-006-0275-4

    Article  Google Scholar 

  • Labidi S, Dachraoui M, Mahjoubi H, Lemaitre N, Ben Salah R, Mtimet S (2002) Natural radioactive nuclides in some Tunisian thermo-mineral springs. J Environ Radioact 62:87–96. doi:10.1016/S0265-931X(01)00153-9

    Article  Google Scholar 

  • Labidi S, Mahjoubi H, Essafi F, Ben Salah R (2010) Natural radioactivity levels in mineral, therapeutic and spring waters in Tunisia. Radiat Phys Chem 79:1196–1202. doi:10.1019/j.radphyschem.2010.07.011

    Article  Google Scholar 

  • Lakehal Ch, Ramdhane M, Boucenna A (2010) The natural radionuclide concentrations in two phosphate ores of east Algeria. J Environ Radioact 101:377–379

    Article  Google Scholar 

  • Matthes G (1982) The properties of groundwater. Wiley, New York

  • Palmer BM, McInerney JJ (1994) Optimization of energy window limits for photopeak detection system. Appl Radiat Isot 45:5–9. doi:10.1016/0969-804390140-6

    Article  Google Scholar 

  • Rihs S, Condomines M (2002) An improved method for Ra isotope (226Ra, 228Ra, 224Ra) measurements by gamma spectrometry in natural waters: application to CO2-rich thermal waters from the French Massif Central. Chem Geol 182:409–421. doi:10.1016/S0009-254(01)00332-1

    Article  Google Scholar 

  • Rusconi R, Forte M, Abbate G, Gallini R, Sgorbat G (2004) Natural radioactivity in the bottled mineral waters: a survey in Northern Italy. J Radioanal Nucl Chem 260:421–427. doi:10.1023/B:JRNC.0000027119.15777.46

    Article  Google Scholar 

  • Saqan A, Kullab M, Ismail AM (2001) Radionuclides in hot mineral spring waters in Jordan. J Environ Radioact 52:99–107. doi:10.1016/S0265-931X(00)00096-5

    Article  Google Scholar 

  • Schuh WM, Klinekebiel DL, Gardner JC, Meyar RF (1997) Tracer and nitrate movements to groundwater in the norruem great plains. J Environ Qual 26:1335–1347

    Article  Google Scholar 

  • Serpelloni E, Vannucci G, Pondrelli S, Argnani A, Casula G, Anzidei M, Baldi P, Gasperini P (2007) Kinematics of the western Africa–Eurasia plate boundary from focal mechanisms and GPS data. Geophys J Int 169:1180–1200. doi:10.1111/j.1365-246X.2007.03367.x

    Article  Google Scholar 

  • Singh P, Rana NPS, Azam A, Naqvi AH, Srivastava DS (1996) Levels of uranium in wars from some Indian cities determined by fission track analysis. Radiat Meas 26:683–687. doi:10.1016/S1350-4487(97)82882-X

    Article  Google Scholar 

  • Singh S, Rani A, Kumar Mahajan R (2005) 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat Meas 39:431–439. doi:10.1016/j.radmeas.2004.09.003

    Article  Google Scholar 

  • Stich D, Ammon CJ, Morales J (2003) Moment tensor solutions for small and moderate earthquakes in the Ibero-Maghreb region. J Geophys Res 108:2148. doi:10.1029/2002JB002057

    Article  Google Scholar 

  • Stich D, Serpelloni E, Mancilla FL, Morales J (2006) Kinematics of the Iberia-Maghreb plate contact from seismic moment tensors and GPS observations. Tectonophysics 426:295–317. doi:10.1016/j.tecto.2006.08.004

    Article  Google Scholar 

  • Toth J (1984) The role of regional gravity flow in the chemical and thermal evolution of groundwater. In: Proceedings of the first Canadian/American conference on hydrogeology, Banff, Alta

  • Trabidou G, Florou H (2010) Estimation of dose rates to humans exposed to elevated natural radioactivity through different pathways in the island of Ikaria, Greece. Radiat Prot Dosim 142:378–384. doi:10.1093/rpd/ncq269.E

    Article  Google Scholar 

  • Wallick EI, Toth J (1976) Methods of regional groundwater flow analysis with suggestions for the use of environmental isotope and hydrochemical data in groundwater hydrology. IAEA, Vienna

    Google Scholar 

  • World Health Organization (WHO) (2011) Guidelines for drinking-water quality, 4th edn. WHO, Geneva

    Google Scholar 

Download references

Acknowledgements

This work was supported by DAC laboratory, funded by the Ministry of Higher Education and Scientific Research-Algeria. Gamma spectrometry analysis was realized in the Laboratory at surety service and radioprotection of the Nuclear Research Center of Birine-Algeria (CRNB). We express our thanks and acknowledgement to the Staff of the Nuclear Research Centre of Birine (CRNB), for their help, especially Mr Azzouz, a research master at surety service and radioprotection for their collaboration and assistance given all along our experimental work program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadda Kebir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebir, H., Boucenna, A. Natural radionuclide concentrations in thermal springs of east Algeria. Environ Earth Sci 76, 52 (2017). https://doi.org/10.1007/s12665-016-6373-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6373-z

Keywords

Navigation