Skip to main content

Aquifer heat storage: abundance and diversity of the microbial community with acetate at increased temperatures

Abstract

The temperature affects the availability of organic carbon and terminal electron acceptors (TEA) as well as the microbial community composition of the subsurface. To investigate the impact of thermal energy storage on the indigenous microbial communities and the fluid geochemistry, lignite aquifer sediments were flowed through with acetate-enriched water at temperatures of 10, 25, 40, and 70 °C in sediment column experiments. Genetic fingerprinting revealed significant differences in the microbial community compositions with respect to the different temperatures. The highest bacterial diversity was found at 70 °C. Carbon and TEA mass balances showed that the aerobic degradation of organic matter and sulfate reduction were the primary processes that occurred in all the columns, whereas methanogenesis only played a major role at 25 °C. The methanogenic activity corresponded to the highest abundance of an acetoclastic Methanosaeta concilii-like archaeon and the most efficient degradation of acetate. This study suggests a significant impact of geothermal energy storage on the natural microbial community and various metabolic activities because of increased temperatures in sediments with a temperature-related sediment organic matter release.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

DGGE:

Denaturing gradient gel electrophoresis

DOC:

Dissolved organic carbon

PCR:

Polymerase chain reaction

qPCR:

Quantitative polymerase chain reaction

SRB:

Sulfate-reducing bacteria

CUE:

Carbon use efficiency

References

  • Adinolfi M, Koch M, Ruck W (1994) Ökologische und mikrobielle Folgen der Wärmespeicherung im Aquifer. Stuttgarter Berichte zur Siedlungswasserwirtschaft 124:89–106

    Google Scholar 

  • Alfreider A, Krossbacher M, Psenner R (1997) Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res 31:832–840

    Google Scholar 

  • Allison SD (2014) Modeling adaptation of carbon use efficiency in microbial communities. Front Microbiol 5:1–9

    Google Scholar 

  • Allison SD, Wallenstein MD, Bradford MA (2010) Soil-carbon response to warming dependent on microbial physiology. Nat Geosci 3:336–340

    Google Scholar 

  • Altschul S, Gish W, Miller W (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • Amann RI, Stromley J, Devereux R, Key R, Stahl DA (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58:614–623

    Google Scholar 

  • Anderson JM (1973) Carbon dioxide evolution from two temperate, deciduous woodland soils. J Appl Ecol 10:361–378

    Google Scholar 

  • Apple JK, del Giorgio PA, Kemp WM (2006) Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat Microb Ecol 43:243–254

    Google Scholar 

  • Arning E, Kölling M, Schulz HD, Panteleit B, Reichling J (2006) Einfluss oberflächennaher Wärmegewinnung auf geochemische Prozesse im Grundwasserleiter. Grundwasser 11:27–39

    Google Scholar 

  • Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–48

    Google Scholar 

  • Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70:3935–3943

    Google Scholar 

  • Blake LI, Tveit A, Øvreås L, Head IM, Gray ND (2015) Response of methanogens in arctic sediments to temperature and methanogenic substrate availability. PLoS ONE 10:e0129733

    Google Scholar 

  • Bonte M, Stuyfzand PJ, Hulsmann A, Van Beelen P (2011a) Underground thermal energy storage: environmental risks and policy developments in the Netherlands and European Union. Ecol Soc 16:22–37

    Google Scholar 

  • Bonte M, Stuyfzand PJ, van den Berg GA, Hijnen WAM (2011b) Effects of aquifer thermal energy storage on groundwater quality and the consequences for drinking water production: a case study from the Netherlands. Water Sci, Technol, p 63

    Google Scholar 

  • Bonte M, Röling WFM, Zaura E, van der Wielen PWJJ, Stuyfzand PJ, van Breukelen BM (2013a) Impacts of shallow geothermal energy production on redox processes and microbial communities. Environ Sci Technol 47:14476–14484

    Google Scholar 

  • Bonte M, van Breukelen BM, Stuyfzand PJ (2013b) Temperature-induced impacts on groundwater quality and arsenic mobility in anoxic aquifer sediments used for both drinking water and shallow geothermal energy production. Water Res 47:5088–5100

    Google Scholar 

  • Brielmann H, Griebler C, Schmidt SI, Michel R, Lueders T (2009) Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiol Ecol 68:273–286

    Google Scholar 

  • Brielmann H, Lueders T, Schreglmann K, Ferraro F, Avramov M, Hammerl V, Blum P, Bayer P, Griebler C (2011) Oberflächennahe Geothermie und ihre potenziellen Auswirkungen auf Grundwasserökosysteme. Grundwasser 16:77–91

    Google Scholar 

  • Brons HJ, Griffioen J, Appelo CAJ, Zehnder AJB (1991) (Bio)geochemical reactions in aquifer material from a thermal energy storage site. Water Res 25:729–736

    Google Scholar 

  • Campbell IL, Postgate JR (1965) Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29:359–363

    Google Scholar 

  • Carroll JJ, Slupsky JD, Mather AE (1991) The solubility of carbon dioxide in water at low pressure. J Phys Chem Ref Data 20(6):1201–1209

    Google Scholar 

  • Chapelle FH (2000) The significance of microbial processes in hydrogeology and geochemistry. Hydrogeol J 8:41–46

    Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Google Scholar 

  • Christoffersen K, Andersen N, Søndergaard M, Liboriussen L, Jeppesen E (2006) Implications of climate-enforced temperature increases on freshwater pico- and nanoplankton populations studied in artificial ponds during 16 months. Hydrobiologia 560:259–266

    Google Scholar 

  • Dachroth WR (2002) Handbuch der Baugeologie und Geotechnik. Springer, Berlin, Heidelberg

    Google Scholar 

  • Daumas S, Cord-Ruwisch R, Garcia JL (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie Van Leeuwenhoek 54:165–178

    Google Scholar 

  • De Rezende JR, Kjeldsen KU, Hubert C, Finster K (2013) Dispersal of thermophilic Desulfotomaculum endospores into Baltic Sea sediments over thousands of years. ISME J 7:72–84

    Google Scholar 

  • Dugan PR, Stoner DL, Pickrum HM (1992) The genus Zoogloea. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York, pp 3952–3964

    Google Scholar 

  • Eugster WJ, Sanner B (2007) Technological status of shallow geothermal energy in europe. Paper presented at the proceedings european geothermal congress, Unterhaching, Germany, 1–8 June 2007

  • Fang HHP, Chan O (1997) Toxicity of phenol towards anaerobic biogranules. Water Res 31:2229–2242

    Google Scholar 

  • Fardeau M-L, Barsotti V, Cayol J-L, Guasco S, Michotey V, Joseph M, Bonin P, Ollivier B (2010) Caldinitratiruptor microaerophilus, gen. nov., sp. nov. isolated from a French hot spring (Chaudes-Aigues, Massif Central): a novel cultivated facultative microaerophilic anaerobic thermophile pertaining to the Symbiobacterium branch within the Firmicutes. Extremophiles 14:241–247

    Google Scholar 

  • Flynn TM, Sanford RA, Ryu H, Bethke CM, Levine AD, Ashbolt NJ, Santo Domingo JW (2013) Functional microbial diversity explains groundwater chemistry in a pristine aquifer. BMC Microbiol 13:146

    Google Scholar 

  • Frey SD, Lee J, Melillo JM, Six J (2013) The temperature response of soil microbial efficiency and its feedback to climate. Nat Clim Chang 3:395–398

    Google Scholar 

  • Gafan GP, Lucas VS, Roberts GJ, Wilson M, Spratt DA, Petrie A (2005) Statistical analyses of complex denaturing gradient gel electrophoresis profiles. J Clin Microbiol 43:3971–3978

    Google Scholar 

  • Geets J, Borremans B, Vangronsveld J, Diels L, Van Der Lelie D (2005) Molecular monitoring of SRB community structure and dynamics in batch experiments to examine the applicability of in situ precipitation of heavy metals for groundwater remediation. J Soils Sediments 5:149–163

    Google Scholar 

  • Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205

    Google Scholar 

  • Gödde M, David MB, Christ MJ, Kaupenjohann M, Vance GF (1996) Carbon mobilization from the forest floor under red spruce in the northeastern U.S.A. Soil Biol Biochem 28:1181–1189

    Google Scholar 

  • Griebler C, Mindl B, Slezak D, Geiger-Kaiser M (2002) Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat Microb Ecol 28:117–129

    Google Scholar 

  • Hähnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914–925

    Google Scholar 

  • Harmsen HJM, Van Kuijk BLM, Plugge CM, Akkermans ADL, De Vos WM, Stams AJM (1998) Syntrophobacter furnaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1388

    Google Scholar 

  • Hartog N, Drijver B, Dinkla I, Bonte M (2013) Field assessment of the impacts of Aquifer Thermal Energy Storage (ATES) systems on chemical and microbial groundwater composition. Eur. Geotherm. Congr. 2013 Pisa, Italy, 3–7 June 2013. pp 1–8

  • Hedges JI, Oades JM (1997) Comparative organic geochemistries of soils and marine sediments. Org Geochem 27:319–361

    Google Scholar 

  • Hekmat, MA (1982). Sedimentologie, Petrographie und Geochemie des Miozäns aus den Bohrungen Osdorf – westlich von Hamburg, Neu-Börnsen und Kasseburg im süd-östlichen Schleswig-Holstein. Thesis. University of Hamburg

  • Henze M (2008) Biological wastewater treatment: principles, modelling and design. IWA publishing, London

    Google Scholar 

  • Hubert C, Loy A, Nickel M, Arnosti C, Baranyi C, Brüchert V, Ferdelman T, Finster K, Christensen FM, de Rezende JR, Vandieken V, Jørgensen BB (2009) A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science(80-) 325:1541–1544

    Google Scholar 

  • Isaksen MF, Bak F, Jørgensen BB (1994) Thermophilic sulfate-reducing bacteria in cold marine sediment. FEMS Microbiol Ecol 14:1–8

    Google Scholar 

  • Jesußek A (2012) Temperaturbedingte Auswirkungen unterirdischer Wärmespeicherung auf hydrogeochemische Sediment-Wasser-Wechelwirkungen in einem oberflächennahen Grundwasserleiter, Dissertation, Universität Kiel

  • Jesußek A, Grandel S, Dahmke A (2013a) Impacts of subsurface heat storage on aquifer hydrogeochemistry. Environ Earth Sci 69:1999–2012

    Google Scholar 

  • Jesußek A, Köber R, Grandel S, Dahmke A (2013b) Aquifer heat storage: sulphate reduction with acetate at increased temperatures. Environ Earth Sci 69:1763–1771

    Google Scholar 

  • Jetten MSM, Stams AJM, Alexander JBZ (1992) Methanogenesis from acetate: a comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Rev 88:181–198

    Google Scholar 

  • Joannis-Cassan C, Delia M-L, Riba J-P (2007) Biofilm growth kinetics on hydrocarbon in a porous medium under biostimulation conditions. Environ Progr 26(2):140–148

    Google Scholar 

  • Kabuth A, Dahmke A, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Bauer S (same issue) Energy storage in the geological subsurface: dimensioning, risk analysis and spatial planning–The ANGUS + project. Submitted to Environ Earth Sci

  • Kalmbach S, Manz W, Wecke J, Szewzyk U (1999) Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp. nov., Aquabacterium parvum sp. nov. and Aquabacterium commune sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. Int J Syst Bacteriol 49:769–777

    Google Scholar 

  • Kamagata Y, Mikami E (1991) Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41:191–196

    Google Scholar 

  • Klein W, Bordeau P P (1989) Mobility of environmental chemicals, including abiotic degradation. In: Haines JA, Klein W, Krishna Murti CR (eds) Ecotoxicol Climate. Wiley, Chichester, pp 65–78

    Google Scholar 

  • Kwon MJ, Boyanov MI, Antonopoulos DA, Brulc JM, Johnston ER, Skinner KA, Kemner KM, O’Loughlin EJ (2014) Effects of dissimilatory sulfate reduction on FeIII (hydr)oxide reduction and microbial community development. Geochim Cosmochim Acta 129:177–190

    Google Scholar 

  • Lane D (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic Acid Tech. Bact. Syst. John Wiley and Son, New York, pp 115–175

    Google Scholar 

  • LaRowe DE, Van Cappellen P (2011) Degradation of natural organic matter: a thermodynamic analysis. Geochim Cosmochim Acta 75:2030–2042

    Google Scholar 

  • Lee KS (2013) Underground thermal energy storage. Springer, London

    Google Scholar 

  • Lerm S, Alawi M, Miethling-Graff R, Wolfgramm M, Rauppach K, Seibt A, Würdemann H (2011a) Influence of microbial processes on the operation of a cold store in a shallow aquifer: impact on well injectivity and filter lifetime. Grundwasser 16:93–104

    Google Scholar 

  • Lerm S, Alawi M, Miethling-Graff R, Seibt A, Wolfgramm M, Rauppach K, Würdemann H (2011b) Mikrobiologisches Monitoring in zwei geothermisch genutzten Aquiferen des Norddeutschen Beckens Microbiological monitoring of two geothermally used aquifers in the North German Basin. Zeitschrift für Geol Wissenschaften 39:195–212

    Google Scholar 

  • Lerm S, Westphal A, Miethling-Graff R, Alawi M, Seibt A, Wolfgramm M, Würdemann H (2013) Thermal effects on microbial composition and microbiologically induced corrosion and mineral precipitation affecting operation of a geothermal plant in a deep saline aquifer. Extremophiles 17:311–327

    Google Scholar 

  • Lienen T, Lüders K, Halm H, Westphal A, Köber R, Würdemann H (same issue) Effects of geothermal usage on shallow aerobic aquifer systems - Temporary increase in abundance and activity of sulfate reducing and sulfur oxidizing bacteria. Submitted to Environ Earth Sci

  • Lovley DR, Phillips EJ (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    Google Scholar 

  • Lueders K, Koeber R, Dahmke A (same issue) Formation of gas phases in context of thermal energy storage in shallow aquifers. Submitted to Environ Earth Sci

  • Manzoni S, Taylor P, Richter A, Porporato A, Ǻgren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196:79–91

    Google Scholar 

  • McCoy WF, Olson BH (1985) Fluorometric determination of the DNA concentration in municipal drinking water. Appl Environ Microbiol 49:811–821

    Google Scholar 

  • Mori K, Hanada S, Maruyama A, Marumo K (2002) Thermanaeromonas toyohensis gen. nov., sp. nov., a novel thermophilic anaerobe isolated from subterranean vein in the Toyoha Mines. Int J Syst Evol Microbiol 52:1675–1680

    Google Scholar 

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454

    Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    Google Scholar 

  • Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    Google Scholar 

  • Ogg CD, Patel BKC (2009) Fervidicola ferrireducens gen. nov., sp. nov., a thermophilic anaerobic bacterium from geothermal waters of the Great Artesian Basin, Australia. Int J Syst Evol Microbiol 59:1100–1107

    Google Scholar 

  • Ollivier B, Cord-Ruwisch R, Hatchikian EC, Garcia JL (1988) Characterization of Desulfovibrio fructosovorans sp. nov. Arch Microbiol 149:447–450

    Google Scholar 

  • Parkes RJ, Gibson GR, Mueller-Harvey I, Buckingham WJ, Herbert RA (1989) Determination of the substrates for sulphate-reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. J Gen Microbiol 135:175–187

    Google Scholar 

  • Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, Lens PNL, Lettinga G, Stams AJM (2005) Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol 55:2159–2165

    Google Scholar 

  • Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov. sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 82:79–82

    Google Scholar 

  • Pedersen K, Arlinger J, Eriksson S, Hallbeck A, Hallbeck L, Johansson J (2008) Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4-450 m in Olkiluoto, Finland. ISME J 2:760–775

    Google Scholar 

  • Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate- reducing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol I. Springer, Berlin Heidelberg, pp 926–940

    Google Scholar 

  • Plugge CM, Zhang W, Scholten JCM, Stams AJM (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:1–8

    Google Scholar 

  • Plugge CM, Henstra AM, Worm P, Swarts DC, Paulitsch-Fuchs AH, Scholten JCM, Lykidis A, Lapidus AL, Goltsman E, Kim E, McDonald E, Rohlin L, Crable BR, Gunsalus RP, Stams AJM, McInerney MJ (2012) Complete genome sequence of Syntrophobacter fumaroxidans strain (MPOBT). Stand Genom Sci 7:91–106

    Google Scholar 

  • Poli A, Esposito E, Lama L, Orlando P, Nicolaus G, de Appolonia F, Gambacorta A, Nicolaus B (2006) Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). Syst Appl Microbiol 29:300–307

    Google Scholar 

  • Rabus R, Hansen T, Widdel F (2006) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) prokaryotes, vol 2. Springer, New York, pp 659–768

    Google Scholar 

  • Reimann C, Garrett RG (2005) Geochemical background—concept and reality. Sci Total Environ 350:12–27

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (2000) Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov., Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. Int J Syst Evol Microbiol 2:649–659

    Google Scholar 

  • Rieger C, Weiland P (2006) Prozessstörungen frühzeitig erkennen. Forschung und Praxis 4:18–20

    Google Scholar 

  • Robador A, Brüchert V, Jørgensen BB (2009) The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Environ Microbiol 11:1692–1703

    Google Scholar 

  • Sand W (2003) Microbial life in geothermal waters. Geothermics 32:655–667

    Google Scholar 

  • Sawayama S, Tada C, Tsukahara K, Yagishita T (2004) Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J Biosci Bioeng 97:65–70

    Google Scholar 

  • Schippers A, Reichling J (2006) Laboruntersuchungen zum Einfluss von Temperaturveränderungen auf die Mikrobiologie des Untergrundes. Grundwasser 11:40–45

    Google Scholar 

  • Shigematsu T, Tang Y, Kawaguchi H, Ninomiya K, Kijima J, Kobayashi T, Morimura S, Kida K (2003) Effect of dilution rate on structure of a mesophilic acetate-degrading methanogenic community during continuous cultivation. J Biosci Bioeng 96:547–558

    Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16:930–939

    Google Scholar 

  • Sørensen J, Christensen D, Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42(1):5–11

    Google Scholar 

  • Sowers L, York KP, Stiles L (2006) Impact of thermal buildup on groundwater chemistry and aquifer microbes. 10th International conference on thermal storage, Ecostock, USA, pp 1–7

  • Stackebrandt E, Sproer C, Rainey FA, Burghardt J, Päuker O, Hippe H (1997) Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47:1134–1139

    Google Scholar 

  • Stadtwerke Kiel (2014) Personal communication

  • Stevenson B, Drilling H, Lawson P, Duncan K, Parisi V, Sufklita J (2011) Microbial communities in bulk fluids and biofilms of an oil facility have similar composition but different structure. Environ Microbiol 13:1078–1090

    Google Scholar 

  • Stoodley P, Dodds I, De Beer D, Lappin-Scott HM, Boyle JD (2005) Flowing biofilms as a transport mechanism for biomass through porous media under laminar and turbulent conditions in a laboratory reactor system. Biofouling 21:161–168

    Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Google Scholar 

  • Thauer RK, Möller-Zinkhan D, Spormann aM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67

    Google Scholar 

  • Van Beek C (1989) Rehabilitation of clogged discharge wells in the Netherlands. Q J Eng Geol 22:75–80

    Google Scholar 

  • Van den Berg L, Patel G, Clark D, Lentz C (1976) Factors affecting rate of methane formation from acetic acid by enriched methanogenic cultures. Can J Microbiol 22:1312–1319

    Google Scholar 

  • Van Loosdrecht MCM, Eikelboom D, Gjaltema A, Mulder A, Tijhuis L, Heijnen J (1995) Biofilm structures. Water Sci Technol 32:35–43

    Google Scholar 

  • Videla HA, Characklis WG (1992) Biofouling and microbially influenced corrosion. Int Biodeterior Biodegrad 29:195–212

    Google Scholar 

  • Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Google Scholar 

  • Westphal A, Lerm S, Miethling-Graff R, Seibt A, Wolfgramm M, Würdemann H (2016) Effects of plant downtime on the microbial community composition in the highly saline brine of a geothermal plant in the North German Basin. Appl Microbiol Biotechnol 100:3277–3290

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Google Scholar 

  • Widdel F (1980) Anaerober Abbau yon Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral thesis, University of Göttingen

  • Widdel F, Pfennig N (1977) A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112:119–122

    Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore London, pp 663–679

    Google Scholar 

  • Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and methanogenic archaea. FEMS Microbiol Ecol 59:611–621

    Google Scholar 

  • Winfrey MR, Ward DM (1983) Substrates for sulfate reduction and methane production in intertidal sediments. Appl Environ Microbiol 45:193–199

    Google Scholar 

  • Würdemann H, Westphal A, Lerm S, Miethling-Graff R, Teitz S, Kasina M, Seibt A, Wolfgramm M, Eichinger F, Kleyböcker A (2016) Einfluss mikrobieller Stoffwechselprozesse auf den Betrieb geothermischer Anlagen–Analyse von Prozessstörungen und Bewertung von Gegenmaßnahmen. Groundwater 21:93–106

    Google Scholar 

  • York KP, Jahangir ZMGS, Solomon T, Stafford L (1998) Effects of a large scale geothermal heat pump installation on aquifer microbiota. 2nd International geothermal conference, Stockholm, pp 1–8

  • Zavarzina D, Tourova T, Kuznetsov B, Bonch-Osmolovskaya E, Slobodkin A (2002) Thermovenabulum ferriorganovorum gen. nov., sp. nov., a novel thermophilic, anaerobic, endospore-forming bacterium. Int J Syst Evol Microbiol 52:1737–1743

    Google Scholar 

  • Zehnder AJB, Huser BA, Brock TD, Wuhrmann K (1980) Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch Microbiol 124:1–11

    Google Scholar 

  • Zinder SH (1990) Conversion of acetic acid to methane by thermophiles. FEMS Microbiol Rev 75:125–137

    Google Scholar 

  • Zinder SH, Anguish T, Cardwell SC (1984) Effects of temperature on methanogenesis in a thermophilic (58°C) anaerobic digestor. Appl Environ Microbiol 47:808–813

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the German Ministry of Science, Economic Affairs and Transport and the University of Kiel for funding within the framework of the “GeoCITTI” project as well as the Federal Ministry of Education and Research for funding the “ANGUS+” (03EK3022D) project. Furthermore, we thank the Applied Geology-Hydrogeology and Engineering Geology groups from Kiel University for their support with the sampling. Also we thank the anonymous reviewer for the valuable comments to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilke Würdemann.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on ‘Subsurface Energy Storage’, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Westphal, A., Kleyböcker, A., Jesußek, A. et al. Aquifer heat storage: abundance and diversity of the microbial community with acetate at increased temperatures. Environ Earth Sci 76, 66 (2017). https://doi.org/10.1007/s12665-016-6356-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6356-0

Keywords

  • Subsurface thermal energy storage
  • Sediment column experiment
  • Denaturing gradient gel electrophoresis
  • Quantitative polymerase chain reaction
  • Microbial temperature response
  • Sulfate reduction
  • Methane production
  • Carbon use efficiency