Skip to main content

Advertisement

Log in

On the importance of a coordinated site characterization for the sustainable intensive thermal use of the shallow subsurface in urban areas: a case study

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Shallow geothermal applications have become standard solutions for heating and cooling in many newly built or redeveloped residential neighborhoods, but current urban development practices do not yet consider the new demands that result from the intensive thermal use of the shallow subsurface. A coordinated site characterization is of great importance as a sound basis for an optimized planning of geothermal systems that brings together user requirements (heating, cooling, and/or seasonal energy storage) and (hydro)geological subsurface conditions. The aim of this study is to raise awareness and to demonstrate the relevance of a coordinated site characterization. Therefore, this study quantifies the advantages of a site-specific over a desktop-based site characterization in reducing uncertainty for calculation of borehole heat exchanger length and predicted induced temperature changes in the subsurface for a newly developed residential neighborhood in the city of Taucha, Germany. Results show that savings of over EUR 1850 per house (EUR 98,050 for the entire neighborhood) can be achieved by a coordinated exploration and prediction accuracy of temperature plume development was substantially improved. Although being more cost intensive, exploration costs for this case study are <3% of the assumed individual geothermal system costs of EUR 16,000 if divided equally among geothermal users. Three different options are presented to implement coordinated exploration concepts into site development practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bayer P, Saner D, Bolay S, Rybach L, Blum P (2012) Greenhouse gas emission savings of ground source heat pump systems in Europe: a review. Renew Sustain Energy Rev 16:1256–1267. doi:10.1016/j.rser.2011.09.027

    Article  Google Scholar 

  • Beck FP, Clark PJ, Puls RW (2000) Location and characterization of subsurface anomalies using a soil conductivity probe. Ground Water Monit Remediat 20:55–59. doi:10.1111/j.1745-6592.2000.tb00265.x

    Article  Google Scholar 

  • Butler JJ (1997) The design, performance, and analysis of slug tests. CRC Press, Boca Raton

    Google Scholar 

  • Butler JJ (2002) A simple correction for slug tests in small-diameter wells. Ground Water 40:303–308. doi:10.1111/j.1745-6584.2002.tb02658.x

    Article  Google Scholar 

  • Butler JJ (2005) Hydrogeological methods for estimation of spatial variations in hydraulic conductivity. In: Rubin Y, Hubbard SS (eds) Hydrogeophysics. Springer, Dordrecht, pp 23–58

    Chapter  Google Scholar 

  • Butler JJ, Garnett EJ (2000) Simple procedures for analysis of slug tests in formations of high hydraulic conductivity using spreadsheet and scientific graphics software. In: Kansas Geological Survey Open File Report 2000-40

  • Chiasson AD, Rees SJ, Spitler JD (2000) A preliminary assessment of the effects of groundwater flow on closed-loop ground source heat pump systems. ASHRAE Trans 106:380–393

    Google Scholar 

  • Christy CD, Christy TM, Wittig A (1994) A percussion probing tool for the direct sensing of soil conductivity. Report of Geoprobe Systems. Salina, Kansas

  • Dehkordi SE, Schincariol RA (2014) Effect of thermal-hydrogeological and borehole heat exchanger properties on performance and impact of vertical closed-loop geothermal heat pump systems. Hydrogeol J 22:189–203. doi:10.1007/s10040-013-1060-6

    Article  Google Scholar 

  • Decagon Devices (2011) KD2 pro thermal properties analyzer operator’s manual. Decagon Devices Inc., Pullmann

    Google Scholar 

  • DHI-WASY (2013) FEFLOW 6.2 Finite element subsurface flow and transport simulation system—user manual, Berlin. http://www.mikepoweredbydhi.com/-/media/shared%20content/mike%20by%20dhi/flyers%20and%20pdf/product-documentation/feflow%206.2%20user%20manual.pdf. letzter Zugriff 27 May 2015

  • Di Sipio E, Chiesa S, Destro E, Galgaro A, Giaretta A, Gola G, Manzella A (2013) Rock thermal conductivity as key parameter for geothermal numerical models. Energy Procedia 40:87–94. doi:10.1016/j.egypro.2013.08.011

    Article  Google Scholar 

  • Diao N, Li Q, Fang Z (2004) Heat transfer in ground heat exchangers with groundwater advection. Int J Therm Sci 43:1203–1211. doi:10.1016/j.ijthermalsci.2004.04.009

    Article  Google Scholar 

  • Diersch H-JG, Bauer D, Heidemann W, Rühaak W, Schätzl P (2011a) Finite element modeling of borehole heat exchanger systems: part 1. Fundamentals. Comput Geosci 37:1122–1135. doi:10.1016/j.cageo.2010.08.003

    Article  Google Scholar 

  • Diersch H-JG, Bauer D, Heidemann W, Rühaak W, Schätzl P (2011b) Finite element modeling of borehole heat exchanger systems: part 2. Numer Simul Comput Geosci 37:1136–1147. doi:10.1016/j.cageo.2010.08.002

    Article  Google Scholar 

  • Dietrich P, Leven C (2006) Direct push-technologies. In: Kirsch R (ed) Groundwater geophysics. Springer, Berlin, pp 321–340

    Chapter  Google Scholar 

  • Dietrich P, Butler JJ, Faiß K (2008) A rapid method for hydraulic profiling in unconsolidated formations. Ground Water 46:323–328. doi:10.1111/j.1745-6584.2007.00377.x

    Article  Google Scholar 

  • DWD - Deutscher Wetterdienst (2014) Vorläufige Gradtagzahlen für ausgewählte Orte in Deutschland: http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU1/KU12/Klimadaten/Gradtagzahl/Archiv/Gesamt__2013__3807,templateId=raw,property=publicationFile.pdf/Gesamt_2013_3807.pdf. Accessed 07 Aug 2014

  • Eissmann L (1975) Das Quartär der Leipziger Tieflandsbucht und angrenzender Gebiete um Saale und Elbe. Akademie-Verlag, Berlin

    Google Scholar 

  • EPA (1997) Field analytical and Site Characterization Technologies. Summary of Applications. U.S. EPA, Washington D.C., p 19

  • Epting J, Haendel F, Huggenberger P (2013) Thermal management of an unconsolidated shallow urban groundwater body. Hydrol Earth Syst Sci 17:1851–1869. doi:10.5194/hess-17-1851-2013

    Article  Google Scholar 

  • Erol S, François B (2014) Efficiency of various grouting materials for borehole heat exchangers. Appl Therm Eng 70:788–799. doi:10.1016/j.applthermaleng.2014.05.034

    Article  Google Scholar 

  • Eskilson P (1987) Dissertation: thermal analysis of heat extraction boreholes. University of Lund, Schweden, Lund

  • European Commission (2014) Annex paper: CiTIEs—Cities of Tomorrow Investigation in Europe

  • Florides G, Kalogirou S (2007) Ground heat exchangers—a review of systems, models and applications. Renew Energy 32:2461–2478. doi:10.1016/j.renene.2006.12.014

    Article  Google Scholar 

  • Florides GA, Pouloupatis PD, Kalogirou S, Messaritis V, Panayides I, Zomeni Z, Partasides G, Lizides A, Sophocleous E, Koutsoumpas K (2011) The geothermal characteristics of the ground and the potential of using ground coupled heat pumps in Cyprus. Energy 36:5027–5036. doi:10.1016/j.energy.2011.05.048

    Article  Google Scholar 

  • García-Gil A, Vázquez-Suñé E, Sánchez-Navarro JÁ, Mateo Lázaro J (2015) Recovery of energetically overexploited urban aquifers using surface water. J Hydrol 531, Part 3:602–611. doi:10.1016/j.jhydrol.2015.10.067

    Article  Google Scholar 

  • Hähnlein D-GS, Molina-Giraldo D-IN, Blum DP, Bayer DP, Grathwohl PDP (2010) Ausbreitung von Kältefahnen im Grundwasser bei Erdwärmesonden. Grundwasser 15:123–133. doi:10.1007/s00767-009-0125-x

    Article  Google Scholar 

  • Hähnlein S, Bayer P, Ferguson G, Blum P (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914–925

    Article  Google Scholar 

  • Hähnlein S, Blum P, Bayer P (2011) Oberflächennahe Geothermie – aktuelle rechtliche Situation in Deutschland. Grundwasser 16:69–75. doi:10.1007/s00767-011-0162-0

    Article  Google Scholar 

  • Heidinger G, Dornstädter J, Fabritius A, Welter M, Wahl G (2004) Zurek: EGRT—enhanced geothermal response test. In: Proceedings 8. Geothermische Fachtagung, Landau, pp 316–323

  • Hein P, Kolditz O, Görke U-J, Bucher A, Shao H (2016) A numerical study on the sustainability and efficiency of borehole heat exchanger coupled ground source heat pump systems. Appl Therm Eng 100:421–433

    Article  Google Scholar 

  • Hoffmann R, Dietrich P (2004) An approach to determine equivalent solutions to the geoelectrical 2D inversion problem. J Appl Geophys 56:79–91. doi:10.1016/j.jappgeo.2004.03.005

    Article  Google Scholar 

  • Hoffmann S, Atkinson T, Polom U, Werban U, Leven C, Engeser B (2008) Integrierter Einsatz von Scherwellenseismik und Direct-Push-Verfahren zur Erkundung eines urbanen Grundwasserleiters. Grundwasser 13:78–90. doi:10.1007/s00767-008-0067-8

    Article  Google Scholar 

  • Hölting B, Coldewey W (2013) Hydrogeologie: Einführung in die Allgemeine und Angewandte Hydrogeologie. Elsevier, München

  • Indacoechea-Vega I, Pascual-Muñoz P, Castro-Fresno D, Calzada-Pérez MA (2015) Experimental characterization and performance evaluation of geothermal grouting materials subjected to heating–cooling cycles. Constr Build Mater 98:583–592. doi:10.1016/j.conbuildmat.2015.08.132

    Article  Google Scholar 

  • Kinzelbach W, Rausch R (1995) Grundwassermodellierung: Eine Einführung mit Übungen. Gebrüder Borntraeger Verlag, Berlin

    Google Scholar 

  • Knödel K, Krummel H, Lange G (1997) Geophysik - Handbuch der Erkundung des Untergrundes von Deponien und Altlasten. Springer, Berlin

    Google Scholar 

  • Lessoff SC, Schneidewind U, Leven C, Blum P, Dietrich P, Dagan G (2010) Spatial characterization of the hydraulic conductivity using direct-push injection logging. Water Resour Res. doi:10.1029/2009wr008949

    Google Scholar 

  • LfULG - Sächsisches Landesamt für Umwelt und Geologie, 1996. Geologische Karte der eiszeitlich bedeckten Gebiete von Sachsen (Maßstab 1:50000). Freiberg

  • LfULG (2013) Geothermisches Kartenwerk im Maßstab 1:50000 GTK 50, Karte der Entzugsleistungen - Allgemeine Erläuterungen

  • LfULG - Sächsisches Landesamt für Umwelt und Geologie, 2014. Geologische Aufschlüsse in Sachsen. http://www.umwelt.sachsen.de/umwelt/infosysteme/weboffice101/synserver?project=geologie-bohrungen&language=de&view=bohrungen. Accessed 12 May 2014

  • LfULG - Sächsisches Landesamt für Umwelt und Geologie, 2015. Interaktive Karten und Kartenübersichten in Sachsen. http://www.umwelt.sachsen.de/umwelt/infosysteme/weboffice101/synserver?project=wasser-grundwasser&language=de&view=grundwasser. Accessed 04 Aug 2015

  • Lo Russo S, Taddia G, Verda V (2012) Development of the thermally affected zone (TAZ) around a groundwater heat pump (GWHP) system: a sensitivity analysis. Geothermics 43:66–74. doi:10.1016/j.geothermics.2012.02.001

    Article  Google Scholar 

  • Luo J, Rohn J, Xiang W, Bayer M, Priess A, Wilkmann L, Steger H, Zorn R (2015) Experimental investigation of a borehole field by enhanced geothermal response test and numerical analysis of performance of the borehole heat exchangers. Energy 84:473–484. doi:10.1016/j.energy.2015.03.013

    Article  Google Scholar 

  • McCall W, Nielsen DM, Farrington SP, Christy TM (2006) Use of direct-push technologies in environmental site characterization and ground-water monitoring. In: Nielsen DM (ed) Practical handbook of environmental site characterization and ground-water monitoring. CRC Press, Boca Raton, pp 345–471

    Google Scholar 

  • Müller B, Hausmann J, Niedzwiedz H (2008) Vorschläge für einheitliche, geotechnische Klassifikationen von Festgesteinen und Festgebirgen für das Bauwesen sowie den Bergbau. In: Schriftreihe Geotechnik, vol 2. Presented at the 2. Fachtagung Geotechnik, Dresden, pp 91–127

  • Pannike S, Kölling M, Schulz HD, Panteleit B, Reichling J, Scheps V (2006) Auswirkung hydrogeologischer Kenngrößen auf die Kältefahnen von Erdwärmesondenanlagen in Lockersedimenten. Grundwasser 11:6–18. doi:10.1007/s00767-006-0114-2

    Article  Google Scholar 

  • Panteleit, 2016. Personal communication

  • Panteleit DB, Reichling DJ (2006) Automatisierte Attribuierung von Bohrungsdaten mit Parametern zur Optimierung von Erdwärmesondenanlagen. Grundwasser 11:19–26. doi:10.1007/s00767-006-0115-1

    Article  Google Scholar 

  • Raymond J, Therrien R, Gosselin L, Lefebvre R (2011) Numerical analysis of thermal response tests with a groundwater flow and heat transfer model. Renew Energy 36:315–324. doi:10.1016/j.renene.2010.06.044

    Article  Google Scholar 

  • Rücker C, Günther T, Spitzer K (2006) Three-dimensional modelling and inversion of dc resistivity data incorporating topography—I. Modelling. Geophys J Int 166(2):495–505

    Article  Google Scholar 

  • Sanner B, Karytsas C, Mendrinos D, Rybach L (2003) Current status of ground source heat pumps and underground thermal energy storage in Europe. Geothermics 32:579–588. doi:10.1016/S0375-6505(03)00060-9

    Article  Google Scholar 

  • Sanner B, Hellström G, Spitler J, Gehlin S (2005) Thermal response test—current status and world-wide application. In: Proceedings of the world geothermal congress 2005, 24–29 April. Antalya, Turkey

  • Schulmeister MK, Butler JJ, Healey JM, Zheng L, Wysocki DA, McCall GW (2003) Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization. Ground Water Monit Remediat 23:52–62. doi:10.1111/j.1745-6592.2003.tb00683.x

    Article  Google Scholar 

  • Seibertz KSO, Chirila MA, Bumberger J, Dietrich P, Vienken T (2016) Development of in-aquifer heat testing for high resolution subsurface thermal-storage capability characterisation. J Hydrol 534:113–123. doi:10.1016/j.jhydrol.2015.12.013

    Article  Google Scholar 

  • Sellwood SM, Healey JM, Birk S, Butler JJ (2005) Direct-push hydrostratigraphic profiling: coupling electrical logging and slug tests. Ground Water 43:19–29. doi:10.1111/j.1745-6584.2005.tb02282.x

    Article  Google Scholar 

  • Staatsbetrieb Geoinformation und Vermessung Sachsen (GeoSN) (2015). Karte der mittleren Grundwasserflurabstände in Sachsen. Geoportal Sachsen. http://www.revosax.sachsen.de/Details.do?sid=2942414717472. letzter Zugriff am 14 Oct 2015

  • Tinti F, Bruno R, Focaccia S (2015) Thermal response test for shallow geothermal applications: a probabilistic analysis approach. Geotherm Energy 3:6. doi:10.1186/s40517-015-0025-5

    Article  Google Scholar 

  • Vandenbohede A, Hermans T, Nguyen F, Lebbe L (2011) Shallow heat injection and storage experiment: heat transport simulation and sensitivity analysis. J Hydrol 409:262–272. doi:10.1016/j.jhydrol.2011.08.024

    Article  Google Scholar 

  • VDI 4640-1 (ed) (2010) Thermal use of the underground: fundamentals, approvals, environmental aspects

  • Vienken T, Reboulet E, Leven C, Kreck M, Zschornack L, Dietrich P (2013) Field comparison of selected methods for vertical soil water content profiling. J Hydrol 501:205–212. doi:10.1016/j.jhydrol.2013.08.004

    Article  Google Scholar 

  • Vienken T, Kreck M, Hausmann J, Werban U, Dietrich P (2014) Innovative strategies for high resolution site characterization: application to a flood plain. Acque Sotter Ital J Groundw 3:7–14. doi:10.7343/AS-091-14-0118

    Article  Google Scholar 

  • Vienken T, Schelenz S, Rink K, Dietrich P (2015) Sustainable intensive thermal use of the shallow subsurface—a critical view on the status quo. Groundwater 53:356–361. doi:10.1111/gwat.12206

    Google Scholar 

  • Werban U, Leven C (2007) Technologies for a fast characterization of subsurface structures—an example from the Milan-Rho site. Ital J Eng Geol Environ 1:115–122. doi:10.4408/IJEGE.2007-01.S-17

    Google Scholar 

  • Zhu K, Blum P, Ferguson G, Balke K-D, Bayer P (2010) The geothermal potential of urban heat islands. Environ Res Lett. doi:10.1088/1748-9326/5/4/044002

    Google Scholar 

  • Zlotnik VA, McGuire VL (1998) Multi-level slug tests in highly permeable formations: 1. Modification of the Springer-Gelhar (SG) model. J Hydrol 204:271–282. doi:10.1016/S0022-1694(97)00128-5

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the German Ministry of Education and Research (Bundesministerium für Bildung und Forschung) in the course of the joint research project ANGUS+, grant agreement 03EK3022B. For the field investigations presented in this study, equipment from the UFZ MOSAIC (Model Driven Site Assessment, Information and Control) research platform was used. We thank the city of Taucha and the Wota Company, especially Barbara Stein and Achim Teichmann, for their support. We thank Andreas Schoßland, Helko Kotas, Manuel Kreck, Ludwig Zschornack, and Christian Guth for conducting field investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Schelenz.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on ‘Subsurface Energy storage’, guest edited by Sebastian Bauer, Andreas Dahmke, and Olaf Kolditz.

S. Schelenz and T. Vienken have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schelenz, S., Vienken, T., Shao, H. et al. On the importance of a coordinated site characterization for the sustainable intensive thermal use of the shallow subsurface in urban areas: a case study. Environ Earth Sci 76, 73 (2017). https://doi.org/10.1007/s12665-016-6331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6331-9

Keywords

Navigation