Skip to main content

Advertisement

Log in

Geological characteristics of strata in Chongqing, China, and mitigation of the environmental impacts of tunneling-induced geo-hazards

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study investigated the geological characteristics of strata in Chongqing and the tunneling-induced geo-hazards therein. The urban area of Chongqing contains six syncline–anticline pairs and is bounded by the Huayingshan basement fault to the west and by the Changshou-Zunyi basement fault to the east. The bedrock, containing sandstone and mudstone of the Upper Shaximiao formation resulting from Middle Triassic strata, is occasionally outcropped. During urbanization, many valleys in Chongqing require to be backfilled to create more flat ground. Thus, the extent and thickness of the loose backfill layer varied from place to place. While tunneling in Chongqing, the following geological characteristics may cause geo-hazards: (1) backfill with a loose structure, poor gradation, high permeability, and large void ratio, (2) highly, or moderately weathered mudstone and sandstone that can easily become softened once subjected to groundwater seepage, and (3) syncline folding containing perched water or confined fissure water. The potential geo-hazards include groundwater ingress, ground surface settlement, and strata collapse. While tunneling within backfill synclines, sandstone synclines, or weak fractured rock, significant amount of groundwater may be encountered, thus leading to a high risk of groundwater ingress. Ground surface settlement can be triggered due to the disturbances of tunnel construction to the backfill or consolidation effect after groundwater ingress. Strata collapse can be caused by the blasting-induced disturbances to poor surrounding geology or by inadequate overburden thickness or by an increase in the effective stress resulting from groundwater loss caused by leakage. To mitigate the environmental impacts of the tunneling-induced geo-hazards, a series of countermeasures; that is, advance geological drilling, advance ground improvement including full-face grouting, and grouting of the surrounding geologic media, and advance pipe umbrella use, are proposed in this paper. The results from a case study indicate that the proposed countermeasures can greatly decrease the ground surface settlement and amount of groundwater ingress during tunneling in Chongqing verifying the effectiveness of the proposed countermeasures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Amorosi A, Boldini D, Felice GD, Malena M, Sebastianeli M (2014) Tunneling-induced deformation and damage on historical masonry structures. Géotechnique 64(2):118–130. doi:10.1680/geot.13.P.032

    Article  Google Scholar 

  • Bednarik M, Yilmaz I, Marschalko M (2012) Landslide hazard and risk assessment: a case study from the Hlohovec–Sered’ landslide area in south-west Slovakia. Nat Hazards 64(1):547–575. doi:10.1007/s11069-012-0257-7

    Article  Google Scholar 

  • Chen M, Shen SL, Arulrajah A, Wu HN, Hou DW, Xu YS (2015) Characteristics of strength development of fiber-reinforced and cement improved soft clay of Shanghai. Geotext Geomembr 43(6):515–523

    Article  Google Scholar 

  • Chongqing Bureau of Geology and Minerals Exploration (CBGM) (1988) Geological map of Chongqing and instruction. Geological Publishing House (in Chinese)

  • Chongqing Bureau of Geology and Minerals Exploration (CBGM) (2002) Structure outline map of Chongqing and instruction. Geological Publishing House (in Chinese)

  • Chongqing Railway Transit Group (CRTG) (2014) Overall planning of urban mass transit in Chongqing. http://www.cqmetro.cn/wwwroot_release/crtweb/html/jiansheguihua/331478 (2014/01) (in Chinese)

  • Chongqing Survey Institute (CSI) (2013) Engineering geological survey report of Xiejiawan-Olympic Sports Center section of loop line in Chongqing (in Chinese)

  • Cui QL, Shen SL, Xu YS, Yin ZY, Horpibulsuk S (2015a) Field performance of jacking pipe during jacking in soft deposits. Tunn Undergr Space Technol 49(2015):336–344. doi:10.1016/j.tust.2015.05.005

    Article  Google Scholar 

  • Cui QL, Shen SL, Xu YS, Wu HN, Yin ZY (2015b) Mitigation of geohazards during deep excavation in Karst region with caverns: a case study. Eng Geol 195(2015):16–27. doi:10.1016/j.enggeo.2015.05.024

    Article  Google Scholar 

  • Cui QL, Wu HN, Shen SL, Xu YS, Ye GL (2015c) Chinese Karst geology and measures to prevent geohazards during shield tunnelling in Karst regions with caves. Nat Hazards 77:129–152. doi:10.1007/s11069-014-1585-6

    Article  Google Scholar 

  • Cui QL, Wu HN, Shen SL, Yin ZY, Horpibulsuk S (2016a) Protection of neighbour buildings due to construction of shield tunnel in mixed ground with sand over weathered granite. Environ Earth Sci 75(6):458. doi:10.1007/s12665-016-5300-7

    Article  Google Scholar 

  • Cui QL, Wu HN, Shen SL, Xu YS (2016b) Geological difficulties of socket diaphragm walls in weathered granite in Shenzhen, China. Bull Eng Geol Environ 75(1):263–273. doi:10.1007/s10064-015-0740-y

    Article  Google Scholar 

  • Du YJ, Jiang NJ, Liu SY, Jin F, Singh SN, Pulppara A (2014) Engineering properties and microstructural characteristics of cement solidified zinc-contaminated kaolin clay. Can Geotech J 51:289–302

    Article  Google Scholar 

  • Jiang M, Yin ZY (2012) Analysis of stress redistribution in soil and earth pressure on tunnel lining by discrete element method. Tunn Undergr Space Technol 32:251–259. doi:10.1016/j.tust.2012.06.001

    Article  Google Scholar 

  • Jiang M, Yin ZY (2014) Influence of soil conditioning on ground deformation during longitudinal tunneling. C R Mec 342(3):189–197. doi:10.1016/j.crme.2014.02.002

    Article  Google Scholar 

  • Jin YF, Yin ZY, Shen SL, Hicher PY (2016a) Selection of sand models and identification of parameters using an enhanced genetic algorithm. Int J Numer Anal Methods Geomech. doi:10.1002/nag.2487

    Google Scholar 

  • Jin YF, Yin ZY, Shen SL, Hicher PY (2016b) Investigation into MOGA for identifying parameters of a critical state based sand model and parameters correlation by factor analysis. Acta Geotech. doi:10.1007/s11440-015-0425-5

    Google Scholar 

  • Joo EJ, Shin JH (2014) Relationship between water pressure and inflow rate in underwater tunnels and buried pipes. Géotechnique 64(3):226–231. doi:10.1680/geot.12.P.185

    Article  Google Scholar 

  • Lamich D, Marschalko M, Yilmaz I, Bednářová P, Niemiec D, Kubečka K, Mikulenka V (2016) Subsidence measurements in roads and implementation in land use plan optimisation in areas affected by deep coal mining. Environ Earth Sci 75(1):1–11. doi:10.1007/s12665-015-4933-2

    Article  Google Scholar 

  • Li XG, Wang T (2010) Study on safety control technologies of pipeline leakage-induced accidents during metro construction. China Saf Sci J 20(5):125–130 (in Chinese)

    Article  Google Scholar 

  • Loganathan N, Poulos HG (1998) Analytical prediction for tunneling-induced ground movements in clays. J Geotech Geoenviron Eng ASCE 124(9):846–856. doi:10.1061/(ASCE)1090-0241(1998)124:9(846)

    Article  Google Scholar 

  • Ministry of Railways of the People’s Republic of China (MRPRC) (2004) Code for hydrogeological investigation of railway engineering (TB 10049-2004). China Railway Publishing House (in Chinese)

  • Ni JC, Cheng WC (2010a) Using fracture grouting to lift structures in clayey sand. J Zhejiang Univ Sci A 11(11):879–886. doi:10.1631/jzus.A0900748

    Article  Google Scholar 

  • Ni JC, Cheng WC (2010b) Monitoring and modeling grout efficiency of lifting structure in soft clay. Int J Geomech 10(6):223–229. doi:10.1061/(ASCE)GM.1943-5622.0000026

    Article  Google Scholar 

  • Ni JC, Cheng WC (2012) Trial grouting under rigid pavement: a case history in Magong Airport, Penghu. J Test Eval 40(1):107–118. doi:10.1520/JTE103776

    Google Scholar 

  • Ni JC, Cheng WC (2014) Quality control of double fluid jet grouting below groundwater table: case history. Soils Found 54(6):1039–1053. doi:10.1016/j.sandf.2014.11.001

    Article  Google Scholar 

  • Onodera TF (1963) Dynamic investigation of foundation rocks, in situ. In: Proceedings of the fifth US symposium on rock mechanics. Pergamon Press, New York, p 517

  • Shen SL, Xu YS (2011) Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can Geotech J 48(9):1378–1392. doi:10.1139/T11-049

    Article  Google Scholar 

  • Shen SL, Ma L, Xu YS, Yin ZY (2013a) Interpretation of increased deformation rate in aquifer IV due to groundwater pumping in Shanghai. Can Geotech J 50(11):1129–1142. doi:10.1139/cgj-2013-0042

    Article  Google Scholar 

  • Shen SL, Wang ZF, Yang J, Ho EC (2013b) Generalized approach for prediction of jet grout column diameter. J Geotech Geoenviron Eng ASCE 139(12):2060–2069. doi:10.1061/(ASCE)GT.1943-5606.0000932

    Article  Google Scholar 

  • Shen SL, Wang ZF, Sun WJ, Wang LB, Horpibulsuk S (2013c) A field trial of horizontal jet grouting using the composite-pipe method in the soft deposit of Shanghai. Tunn Undergr Space Technol 35(2013):142–151. doi:10.1016/j.tust.2013.01.003

    Article  Google Scholar 

  • Shen SL, Wu HN, Cui YJ, Yin ZY (2014) Long-term settlement behaviour of metro tunnels in the soft deposits of Shanghai. Tunn Undergr Space Technol 40(1):309–323. doi:10.1016/j.tust.2013.10.013

    Article  Google Scholar 

  • Shen SL, Wang JP, Wu HN, Xu YS, Ye GL (2015a) Evaluation of hydraulic conductivity for both marine and deltaic deposits based on piezocone testing. Ocean Eng 110:174–182. doi:10.1016/j.oceaneng.2015.10.011

    Article  Google Scholar 

  • Shen SL, Wu YX, Xu YS, Hino T, Wu HN (2015b) Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin. Comput Geotech 68:196–207. doi:10.1016/j.compgeo.2015.03.011

    Article  Google Scholar 

  • Shen SL, Wu YX, Xu YS, Hino T, Wu HN (2015c) Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin. Comput Geotech 68:196–207. doi:10.1016/j.compgeo.2015.03.011

    Article  Google Scholar 

  • Shen SL, Cui QL, Ho EC, Xu YS (2016) Ground response to multiple parallel microtunneling operations in cemented silty clay and sand. J Geotech Geoenviron Eng 142(5):04016001(1–11). doi:10.1061/(ASCE)GT.1943-5606.0001441

    Article  Google Scholar 

  • Tan Y, Wang D (2015a) Structural behaviors of large underground earth-retaining systems in Shanghai. I: unpropped circular diaphragm wall. J Perform Constr Facil ASCE 29(2):04014058. doi:10.1061/(ASCE)CF.1943-5509.0000521

    Article  Google Scholar 

  • Tan Y, Wang D (2015b) Structural behaviors of large underground earth-retaining systems in Shanghai. II: multipropped rectangular diaphragm wall. J Perform Constr Facil ASCE 29(2):04014059. doi:10.1061/(ASCE)CF.1943-5509.0000535

    Article  Google Scholar 

  • Tan Y, Li X, Kang Z, Liu J, Zhu Y (2015a) Zoned excavation of an oversized pit close to an existing metro line in stiff clay: case study. J Perform Constr Facil ASCE 29(6):04014158. doi:10.1061/(ASCE)CF.1943-5509.0000652

    Article  Google Scholar 

  • Tan Y, Wei B, Zhou X, Diao Y (2015b) Lessons learned from construction of Shanghai metro stations: importance of quick excavation, prompt propping, timely casting and segmented construction. J Perform Constr Facil ASCE 29(4):04014096. doi:10.1061/(ASCE)CF.1943-5509.0000599

    Article  Google Scholar 

  • Wang ZF, Shen SL, Ho EC, Kim YH (2013) Investigation of field installation effects of horizontal Twin-Jet grouting in Shanghai soft soil deposits. Can Geotech J 50(3):288–297. doi:10.1139/cgj-2012-0199

    Article  Google Scholar 

  • Wu HN, Shen SL, Chai JC, Zhang DM, Xu YS (2015a) Evaluation of the train-load-induced settlement of metro tunnels in Shanghai. Geotech Eng ICE Proc 168(5):396–409. doi:10.1680/geng.13.00159

    Article  Google Scholar 

  • Wu HN, Shen SL, Ma L, Yin ZY, Horpibulsuk S (2015b) Evaluation of the strength increase of marine clay under staged embankment loading: a case study. Mar Georesour Geotechnol 33(6):532–541. doi:10.1080/1064119X.2014.954180

    Article  Google Scholar 

  • Wu HN, Shen SL, Liao SM, Yin ZY (2015c) Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings. Tunn Undergr Space Technol 50:317–323. doi:10.1016/j.tust.2015.08.001

    Article  Google Scholar 

  • Wu YX, Shen SL, Wu HN, Xu YS, Yin ZY, Sun WJ (2015d) Environmental protection using dewatering technology in a deep confined aquifer beneath a shallow aquifer. Eng Geol 196:59–70. doi:10.1016/j.enggeo.2015.06.015

    Article  Google Scholar 

  • Wu YX, Shen SL, Xu YS, Yin ZY (2015e) Characteristics of groundwater seepage with cut-off wall in gravel aquifer. I: field observations. Can Geotech J 52:1–13. doi:10.1139/cgj-2014-0285

    Article  Google Scholar 

  • Wu YX, Shen SL, Yin ZY, Xu YS (2015f) Characteristics of groundwater seepage with cutoff wall in gravel aquifer. II: numerical analysis. Can Geotech J 52(10):1539–1549. doi:10.1139/cgj-2014-0289

    Google Scholar 

  • Wu YX, Shen SL, Wu HN, Xu YS, Yin ZY, Sun WJ (2015g) Environmental protection using dewatering technology in a deep confined aquifer beneath a shallow aquifer. Eng Geol 196(2015):59–70. doi:10.1016/j.enggeo.2015.06.015

    Article  Google Scholar 

  • Xu YS, Shen SL, Du YJ, Chai JC, Horpibulsuk S (2013) Modelling the cutoff behavior of underground structure in multi-aquifer-aquitard groundwater system. Nat Hazards 66(2):731–748. doi:10.1007/s11069-012-0512-y

    Article  Google Scholar 

  • Xu YS, Shen SL, Ma L, Sun WJ, Yin ZY (2014) Evaluation of the blocking effect of retaining walls on groundwater seepage in aquifers with different insertion depths. Eng Geol 183:254–264. doi:10.1016/j.enggeo.2014.08.023

    Article  Google Scholar 

  • Xu YS, Yuan Y, Shen SL, Yin ZY, Wu HN, Ma L (2015) Investigation into subsidence hazards due to groundwater pumping from Aquifer II in Changzhou, China. Nat Hazards 78(1):281–296. doi:10.1007/s11069-015-1714-x

    Article  Google Scholar 

  • Ye GL, Hashimoto T, Shen SL, Zhu HH, Bai TH (2015) Important lesson learnt from unusual ground settlement during Double-O-Tube tunneling in soft ground. Tunn Undergr Space Technol 49(2015):79–91

    Article  Google Scholar 

  • Yilmaz I, Marschalko M (2012) A leaning historical monument formed by underground mining effect: an example from Czech Republic. Eng Geol 133:43–48. doi:10.1016/j.enggeo.2012.02.011

    Article  Google Scholar 

  • Yilmaz I, Marschalko M, Lamich D, Drusa M et al (2014) Monitoring of heat transmission from buildings into geological environment and evaluation of soil deformation consequences in foundation engineering. Environ Earth Sci 72(8):2947–2955. doi:10.1007/s12665-014-3200-2

    Article  Google Scholar 

  • Yin ZY, Zhu QY, Yin JH, Ni Q (2014) Stress relaxation coefficient and formulation for soft soils. Geotech Lett 4(1):45–51. doi:10.1680/geolett.13.00070

    Article  Google Scholar 

  • Yin ZY, Yin JH, Huang HW (2015) Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: experiments and modeling. Mar Georesour Geotech 33(1):79–91. doi:10.1080/1064119X.2013.797060

    Article  Google Scholar 

  • Yin ZY, Hicher PY, Dano C, Jin YF (2016) Modeling the mechanical behavior of very coarse granular materials. J Eng Mech ASCE. doi:10.1061/(ASCE)EM.1943-7889.0001059

    Google Scholar 

  • Zhang CP, Zhang DL, Wang MX, Li QQ, Liu S (2010) Catastrophe mechanism and control technology of ground collapse induced by urban tunneling. Rock Soil Mech 31(Supp. 1):303–309 (in Chinese)

    Google Scholar 

  • Zhang N, Shen SL, Wu HN, Chai JC, Yin ZY (2015) Evaluation of performance of embankments with reinforcement on PVD-improved marine clay. Geotext Geomembr 43(6):506–514

    Article  Google Scholar 

  • Zhao J, Hefny AM, Zhou Y (2005) Hydrofracturing in situ stress measurements in Singapore granite. Int J Rock Mech Min Sci 42(4):577–583. doi:10.1016/j.ijrmms.2005.02.002

    Article  Google Scholar 

  • Zhao J, Gong QM, Eisensten Z (2007) Tunnelling through a frequently changing and mixed ground: a case history in Singapore. Tunn Undergr Space Technol 22(4):388–400. doi:10.1016/j.tust.2006.10.002

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Nature Science Foundation of China (NSFC) (Grant No. 51508323) and the National Basic Research Program of China (973 Program: 2015CB057802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-Na Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, KL., Wu, HN., Cheng, WC. et al. Geological characteristics of strata in Chongqing, China, and mitigation of the environmental impacts of tunneling-induced geo-hazards. Environ Earth Sci 76, 10 (2017). https://doi.org/10.1007/s12665-016-6325-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6325-7

Keywords