Environmental Earth Sciences

, 75:1481 | Cite as

Modular development of an inline monitoring system for waterborne pathogens in raw and drinking water

  • Daniel KartheEmail author
  • Ole Behrmann
  • Verena Blättel
  • Dennis Elsässer
  • Christian Heese
  • Matthias Hügle
  • Frank Hufert
  • Andreas Kunze
  • Reinhard Niessner
  • Johannes Ho
  • Buren Scharaw
  • Matthias Spoo
  • Andreas Tiehm
  • Gerald Urban
  • Silvia Vosseler
  • Thomas Westerhoff
  • Gregory DameEmail author
  • Michael SeidelEmail author
Thematic Issue
Part of the following topical collections:
  1. Water in Germany


The state-of-the-art monitoring of drinking water hygiene is based on the cultivation and enumeration of indicator bacteria. Despite its proven reliability, this approach has the disadvantages of being (a) relatively slow and (b) limited to a small number of indicator bacteria. Ideally, alternative methods would be less time-consuming while providing information about a larger set of hygienically relevant microorganisms including viruses. In this paper, we present insights into the design of a modular concentration and detection system for bacteria, bacteriophages and viruses. Following further validation, this or similar techniques have the potential to extend and speed up the monitoring of raw and drinking water hygiene in the future. The system consists of different modules for the concentration of microorganisms, an amplification and detection unit that includes a module for the differentiation between live and dead microorganisms, and an automated system for decision support and self-diagnosis. The ongoing testing under controlled laboratory conditions and real-life conditions in the water supply industry yields further system improvements. Moreover, the increased sensitivity and broader range of microbiological parameters emphasize the need for a reconsideration of the currently used criteria for the assessment of (drinking) water hygiene.


Hygiene monitoring Waterborne pathogens Drinking water Raw water Concentration system Sample pretreatment Lab-on-a-chip PCR RPA Isothermal amplification Live/dead discrimination 



The results presented in this paper are based on the research and development project “Development and Implementation of a Concentration and Detection System for the Inline Monitoring of Waterborne Pathogens in Raw and Drinking Water (EDIT)” which is funded by the German Federal Ministry of Education and Research (BMBF; Grant No. 033W010A-C, E-J) in the framework of the funding program “Smart and Multifunctional Infrastructural Systems for Sustainable Water Supply, Sanitation and Stormwater Management (INIS)” and the FONA (Research for Sustainable Development) initiative. We acknowledge the support provided by the Project Administration Jülich (PTJ) and the INIS networking project. The authors are grateful for the very constructive feedback of the reviewers that has helped to improve the manuscript.


  1. Abd El Wahed A, El-Deeb A, El-Tholoth M, Abd El Kader H, Ahmed A, Hassan S, Hoffmann B, Haas B, Shalaby MA, Hufert FT, Weidmann M (2013a) A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS ONE 8(8):e71642. doi: 10.1371/journal.pone.0071642 CrossRefGoogle Scholar
  2. Abd El Wahed A, Patel P, Heidenreich D, Hufert FT, Weidmann M (2013b) Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr. doi: 10.1371/currents.outbreaks.62df1c7c75ffc96cd59034531e2e8364 Google Scholar
  3. Abd El Wahed A, Patel P, Faye O, Thaloengsok S, Heidenreich D, Matangkasombut P, Manopwisedjaroen K, Sakuntabhai A, Sall AA, Hufert FT, Weidmann M (2015a) Recombinase polymerase amplification assay for rapid diagnostics of dengue infection. PLoS ONE 10(6):e0129682. doi: 10.1371/journal.pone.0129682 CrossRefGoogle Scholar
  4. Abd El Wahed A, Weidmann M, Hufert FT (2015b) Diagnostics-in-a-suitcase: development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol 69:16–21. doi: 10.1016/j.jcv.2015.05.004 CrossRefGoogle Scholar
  5. APHA, AWWA, AEF (1998) Standard Methods for the Examination of Water and Waste Water, 20th ed. Washington, DC, USA: American Public Health Association, American Water Works Association and Water Environment FederationGoogle Scholar
  6. Arnalich S (2011) EPANET and development: how to calculate water networks by computer. Arnalich Water and Habitat, AlmériaGoogle Scholar
  7. Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1989) Damage to the bases in DNA induced by hydrogen peroxide and ferric ion chelates. J Biol Chem 264(34):20509–20512Google Scholar
  8. Asiello PJ, Baeumner AJ (2011) Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11(8):1420–1430. doi: 10.1039/c0lc00666a CrossRefGoogle Scholar
  9. Auckenthaler A, Huggenberger P (eds) (2002) Pathogene Mikroorganismen im Grund- und Trinkwasser. Transport – Nachweismethoden – Wassermanagement. Springer, BaselGoogle Scholar
  10. Austin RG, van Bloemen Waanders B, McKenna SA, Choi CY (2008) Mixing at cross junctions in water distribution systems. II: experimental study. J Water Res Pl 134(3):295–302. doi: 10.1061/(ASCE)0733-9496(2008)134:3(295) CrossRefGoogle Scholar
  11. Berney M, Weilenmann HU, Egli T (2006) Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS). Microbiology 152(6):1719–1729CrossRefGoogle Scholar
  12. Bernt M, Naumann M (2006) Wenn der Hahn zu bleibt: Wasserversorgung in schrumpfenden Städten. In: Frank S, Gandy M (eds) (2006) Hydropolis. Wasser und die Stadt der Moderne, S. 210–228. Campus Verlag, Frankfurt/MainGoogle Scholar
  13. Berry J, Boman E, Riesen LA (2012) User’s Manual TEVA-SPOT Toolkit 2.5.2. United States Environmental Protection Agency, CincinnatiGoogle Scholar
  14. Bosch A (1998) Human enteric viruses in the water environment: a minireview. Int Microbiol 1(3):191–196Google Scholar
  15. Bosch A, Guix S, Sano D, Pintó RM (2008) New tools for the study and direct surveillance of viral pathogens in water. Curr Opin Biotechnol 19(3):295–301. doi: 10.1016/j.copbio.2008.04.006 CrossRefGoogle Scholar
  16. Botzenhart K, Seidel M (2010) Wasservirologie. In: Niessner R (ed) Höll – Wasser. deGruyter, Berlin, pp 412–426Google Scholar
  17. Bridle H, Miller B, Desmulliez MPY (2014) Application of microfluidics in waterborne pathogen monitoring: a review. Water Res 55:256–271. doi: 10.1016/j.watres.2014.01.061 CrossRefGoogle Scholar
  18. Bruma M, Tofan C (2008) Detection, identification and quantification of indicator bacteria from drinking water. J Agroaliment Process Technol 14:196–202Google Scholar
  19. Bundesministerium der Justiz (2013) Verordnung über die Qualität von Wasser für den menschlichen Gebrauch (Trinkwasserverordnung - TrinkwV 2001) in der Fassung der Bekanntmachung vom 2. August 2013Google Scholar
  20. Cann KF, Thomas DR, Salmon RL, Wyn-Jones AP, Kay D (2013) Extreme water-related weather events and waterborne disease. Epidemiol Infect 141(4):671–686. doi: 10.1017/S0950268812001653 CrossRefGoogle Scholar
  21. Conelly JT, Baeumner AJ (2012) Biosensors for the detection of waterborne pathogens. Anal Bionanal Chem 402(1):117–127. doi: 10.1007/s00216-011-5407-3 CrossRefGoogle Scholar
  22. Craw P, Balachandran W (2012) Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. Lab Chip 12(14):2469–2486. doi: 10.1039/c2lc40100b CrossRefGoogle Scholar
  23. Deutsches Institut für Urbanistik (=DIfU; 2015) (Ed.) Smart and multifunctional infrastructural systems for sustainable water supply, sanitation and stormwater management. Interim results from the INIS projects. BerlinGoogle Scholar
  24. Elizaquível P, Sánchez G, Aznar R (2012) Application of propidium monoazide quantitative PCR for selective detection of live Escherichia coli O157:H7 in vegetables after inactivation by essential oils. Int J Food Microbiol 159(2):115–121. doi: 10.1016/j.ijfoodmicro.2012.08.006 CrossRefGoogle Scholar
  25. Enriquez CE, Gerba CP (1995) Concentration of enteric adenovirus-40 from tap, sea, and waste water. Wat Res 29(11):2554–2560. doi: 10.1016/0043-1354(95)00099-7 CrossRefGoogle Scholar
  26. European Centre for Disease Prevention and Control (=ECDC; ed) (2010) Climate change and communicable diseases in the EU Member States. Handbook for national vulnerability, impact and adaptation assessments. StockholmGoogle Scholar
  27. European Centre for Disease Prevention and Control (=ECDC; ed) (2012) Assessing the potential impacts of climate change on food- and waterborne diseases in Europe. Technical Report. StockholmGoogle Scholar
  28. Figueras MJ, Borrego JJ (2010) New perspectives in monitoring drinking water microbial quality. Int J Environ Res Public Health 7(12):4179–4202. doi: 10.3390/ijerph7124179 CrossRefGoogle Scholar
  29. Foladori P, Bruni L, Tamburini S, Ziglio G (2010) Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry. Water Res 44(13):3807–3818. doi: 10.1016/j.watres.2010.04.027 CrossRefGoogle Scholar
  30. Fong TT, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol R 69(2):357–371. doi: 10.1128/MMBR.69.2.357-371.2005 CrossRefGoogle Scholar
  31. Fu Z, Rogelj S, Kieft TL (2005) Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR. Int J Food Microbiol 99(1):47–57. doi: 10.1016/j.ijfoodmicro.2004.07.013 CrossRefGoogle Scholar
  32. Gibson KE, Schwab KJ, Spencer SK, Borchardt MA (2012) Measuring and mitigating inhibition during quantitative real time PCR analysis of viral nucleic acid extracts from large-volume environmental water samples. Water Res 46(13):4281–4291. doi: 10.1016/j.watres.2012.04.030 CrossRefGoogle Scholar
  33. Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies: a review. Nucleos Nucleot Nucl 27(3):224–243. doi: 10.1080/15257770701845204 CrossRefGoogle Scholar
  34. Girones R, Ferrús MA, Alonso JL, Rodriguez-Manzano J, Calgua B, Corrêa Ade A, Hundesa A, Carratala A, Bofill-Mas S (2010) Molecular detection of pathogens in water—the pros and cons of molecular techniques. Water Res 44(15):4325–4339. doi: 10.1016/j.watres.2010.06.03 CrossRefGoogle Scholar
  35. Gofti-Laroche L, Gratacap-Cavallier B, Genoulaz O, Joret JC, Hartemann P, Seigneurin JM, Zmirou D (2001) A new analytical tool to assess health risks associated with the virological quality of drinking water (EMIRA study). Water Sci Technol 43(12):39–48Google Scholar
  36. Grabow WOK, Taylor MB, de Villiers JC (2001) New methods for the detection of viruses: call for review of drinking water quality guidelines. Water Sci Technol 43(12):1–8Google Scholar
  37. Hakenberg S, Hügle M, Meyer P, Behrmann O, Dame G, Urban GA (2015) Fenton fragmentation for faster electrophoretic on chip purification of amplifiable genomic DNA. Biosens Bioelectron 67:49–52. doi: 10.1016/j.bios.2014.06.003 CrossRefGoogle Scholar
  38. Hamza IA, Jurzik L, Stang A, Sure K, Uberla K, Wilhelm M (2009) Detection of human viruses in rivers of a densely-populated area in Germany using a virus adsorption elution method optimized for PCR analyses. Water Res 43(10):2657–2668. doi: 10.1016/j.watres.2009.03.020 CrossRefGoogle Scholar
  39. Hamza IA, Jurzik L, Überla K, Wilhelm M (2011) Methods to detect infectious human enteric viruses in environmental water samples. Int J Hyg Environ Health 214(6):424–436. doi: 10.1016/j.ijheh.2011.07.014 CrossRefGoogle Scholar
  40. Hillenbrand T, Niederste-Hollenberg J, Menger-Krug E, Klug S, Holländer R, Lautenschläger S, Geyler S (2010) Demografischer Wandel als Herausforderung für die Sicherung und Entwicklung einer kosten- und ressourceneffizienten Abwasserinfrastruktur. UBA-Texte 36/2010, DessauGoogle Scholar
  41. Ho CK, Khalsa SS (2009) EPANET-BAM: water quality modeling with incomplete mixing in pipe junctions. Water Distrib Syst Anal 2008:1–11. doi: 10.1061/41024(340)87 Google Scholar
  42. Ho J, Seidel M, Niessner R, Eggers J, Tiehm A (2016) Long amplicon (LA)-qPCR for the discrimination of infectious and noninfectious phix174 bacteriophages after UV inactivation. Water Res 103:141–148. doi: 10.1016/j.watres.2016.07.032 CrossRefGoogle Scholar
  43. Ibekwe AM, Watt PM, Grieve CM, Sharma VK, Lyons SR (2002) Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Appl Environ Microbiol 68(10):4853–4862. doi: 10.1128/AEM.68.10.4853-4862.2002 CrossRefGoogle Scholar
  44. Ikner L, Gerba C, Bright K (2012) Concentration and recovery of viruses from water: a comprehensive review. Food Environ Virol 4(2):41–67. doi: 10.1007/s12560-012-9080-2 CrossRefGoogle Scholar
  45. Jasson V, Jacxsens L, Luning P, Rajkovic A, Uyttendele M (2010) Alternative microbial methods: an overview and selection criteria. Food Microbiol 27(6):710–730. doi: 10.1016/ CrossRefGoogle Scholar
  46. Jofre J, Blanch AR (2010) Feasibility of methods based on nucleic acid amplification techniques to fulfil the requirements for microbiological analysis of water quality. J Appl Microbiol 109(6):1853–1867. doi: 10.1111/j.1365-2672.2010.04830.x CrossRefGoogle Scholar
  47. Kahlisch L, Henne K, Groebe L, Draheim J, Höfle MG, Brettar I (2010) Molecular analysis of the bacterial drinking water community with respect to live/dead status. Water Sci Technol 61(1):9–14. doi: 10.2166/wst.2010.773 CrossRefGoogle Scholar
  48. Karthe D (2015) Bedeutung des Klimawandels (insbesondere hydrometeorologischer Extremereignisse) für die Trinkwasserhygiene in Deutschland und Mitteleuropa. Hydrol Wasserbewirtsch 59(5):264–270. doi: 10.5675/HyWa_2015,5_7 Google Scholar
  49. Karthe D, Rehkopp N, Reeh T, Faust H (2016) Regional disparities of microbiological drinking water quality: assessment of spatial pattern and potential sociodemographic determinants. Urban Water J. doi: 10.1080/1573062X.2016.1240809 Google Scholar
  50. Kennedy D, Cronin UP, Wilkinson MG (2011) Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to simulated food processing treatments, determined using fluorescence-activated cell sorting and plate counting. Appl Environ Microbiol 77(13):4657–4668. doi: 10.1128/AEM.00323-11 CrossRefGoogle Scholar
  51. Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M (2014) Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens. Microchim Acta 181:1715–1723. doi: 10.1007/s00604-014-1198-5 CrossRefGoogle Scholar
  52. Kistemann T, Schulte W, Rudat K, Hentschel W, Häußermann D (2012) Gebäudetechnik für Trinkwasser. Springer, BerlinCrossRefGoogle Scholar
  53. Kloth KR, Niessner R, Seidel M (2009) Development of an open stand-alone platform for regenerable automated microarrays. Biosens Bioelectron 24(7):2106–2112. doi: 10.1016/j.bios.2008.11.005 CrossRefGoogle Scholar
  54. Koziol M (2007) Demografische Entwicklungen in Deutschland und ihre Konsequenzen für die Wasserverteilungsnetze und Abwasserkanalisationen. Forum der Forschung 20:25–28. Eigenverlag der BTU Cottbus, CottbusGoogle Scholar
  55. Kunze A, Elsäßer D, Karthe D, Dame G, Sedehizade F, Nießner R, Seidel M (2014) Entwicklung eines Hygiene Online-Monitoring Systems. Automatisierter Schnellnachweis von Bakterien und Viren (033W010E) für Roh- und Trinkwasser. In: Dellert-Ritter M (Ed.) (2014): Food + chrom Forum, pp. 60f. Mainaschaff, GermanyGoogle Scholar
  56. Kunze A, Pei L, Elsaesser D, Niessner R, Seidel M (2015) High performance concentration method for viruses in drinking water. J Virol Methods 222:132–137. doi: 10.1016/j.jviromet.2015.06.007 CrossRefGoogle Scholar
  57. Kunze A, Dilcher M, Abd El Wahed A, Hufert F, Niessner R, Seidel M (2016) On-Chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria. Anal Chem 88(1):898–905. doi: 10.1021/acs.analchem.5b03540 CrossRefGoogle Scholar
  58. Leifels M, Jurzik L, Wilhelm M, Hamza IA (2015) Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV-exposure and chlorine. Int J Hyg Environ Health 218(8):686–693. doi: 10.1016/j.ijheh.2015.02.003 CrossRefGoogle Scholar
  59. Lengger S, Niessner R, Seidel M (2012) Pathogens in Water: enrich and verify. Nachr Chem 60:1208–1212CrossRefGoogle Scholar
  60. Lengger S, Otto J, Elsässer D, Schneider O, Tiehm A, Fleischer J, Niessner R, Seidel M (2014) Oligonucleotide microarray chip for the quantification of MS2, ΦX174, and adenoviruses on the multiplex analysis platform MCR 3. Anal Bioanal Chem 406(14):3323–3334. doi: 10.1007/s00216-014-7641-y CrossRefGoogle Scholar
  61. Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol 5:258. doi: 10.3389/fmicb.2014.00258 Google Scholar
  62. Lim DV, Simpson JM, Kearns EA, Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18(4):583–607CrossRefGoogle Scholar
  63. Lui C, Cady C, Batt CA (2009) Nucleic acid-based detection of bacterial pathogens using integrated microfluidic platform systems. Sensors 9(5):3713–3744. doi: 10.3390/s90503713 CrossRefGoogle Scholar
  64. Mompremier R, Pelletier G, Fuentes Mariles OA, Ghebremichael K (2015) Impact of incomplete mixing in the prediction of chlorine residuals in municipal water distribution systems. J Water Supply Res Technol AQUA 64(8):904–914. doi: 10.2166/aqua.2015.148 CrossRefGoogle Scholar
  65. Morales-Morales HA, Vidal G, Olszewski J, Rock CM, Dasgupta D, Oshima KH, Smith GB (2003) Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, and viruses from water. Appl Environ Microbiol 69(7):4098–4102. doi: 10.1128/AEM.69.7.4098-4102.2003 CrossRefGoogle Scholar
  66. Moresco V, Damazo NA, Barardi CR (2015) Rotavirus vaccine stability in the aquatic environment. J Appl Microbiol. doi: 10.1111/jam.13021 Google Scholar
  67. Nichols G, Lane C, Asgari N, Verlander NQ, Charlett A (2009) Rainfall and outbreaks of drinking water related disease in England and Wales. J Water Health 7(1):1–8. doi: 10.2166/wh.2009.143 CrossRefGoogle Scholar
  68. Nocker A, Cheung CY, Camper AK (2006) Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67(2):310–320. doi: 10.1016/j.mimet.2006.04.015 CrossRefGoogle Scholar
  69. Nogva HK, Drømtorp SM, Nissen H, Rudi K (2003) Ethidium monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. Biotechniques 34(4):804–813Google Scholar
  70. Ott S, Niessner R, Seidel M (2011) Preparation of epoxy-based macroporous monolithic columns for the fast and efficient immunofiltration of Staphylococcus aureus. J Sep Sci 34(16–17):2181–2192. doi: 10.1002/jssc.201100208 Google Scholar
  71. Otto J, Tiehm A (2015): Rapid Virus qPCR and PMA-qPCR Detection after Treatment with Heat, UV and Cl2. In: 18th international symposium on health related water microbiology, IWA WaterMicro 2015, Lisbon, Portugal, 13–19 September 2015Google Scholar
  72. Otto J, Jurzik L, Schneider M, Stange C, Hamza I, Preuß G, Tiehm A (2015) Entwicklung und Validierung von molekularbiologischen PCR-Methoden zum quantitativen Nachweis von hygienerelevanten Bakterien und Viren im Wasser. energie|wasser-praxis 10:58–62Google Scholar
  73. Pei L, Rieger M, Lengger S, Ott S, Zawadsky C, Hartmann NM, Selinka HC, Tiehm A, Niessner R, Seidel M (2012) Combination of crossflow ultrafiltration, monolithic affinity filtration, and quantitative reverse transcriptase PCR for rapid concentration and quantification of bacteriophage MS2 in environmental water. Environ Sci Technol 46(18):10073–10080. doi: 10.1021/es302304t Google Scholar
  74. Peskoller C, Niessner R, Seidel M (2009) Development of an epoxy-based monolith used for the affinity capturing of Eschericha coli bacteria. J Chromatogr A 1216(18):3794–3801. doi: 10.1016/j.chroma.2009.02.041 CrossRefGoogle Scholar
  75. Petry D (2009): Klimawandel und Trinkwasserversorgung: Auswirkungen, Handlungsbedarf, Anpassungsmöglichkeiten. DVGW energie|wasser-praxis 10:48–54Google Scholar
  76. Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4(7):e204. doi: 10.1371/journal.pbio.0040204 CrossRefGoogle Scholar
  77. Pitkänen T, Paakkari P, Miettinen IT, Heinonen-Tanski H, Paulin L, Hänninen ML (2007) Comparison of media for enumeration of coliform bacteria and Escherichia coli in non-disinfected water. J Microbiol Methods 68:522–529. doi: 10.1016/j.mimet.2006.10.007 CrossRefGoogle Scholar
  78. Podszun S, Vulto P, Heinz H, Hakenberg S, Hermann C, Hankemeier T, Urban GA (2012) Enrichment of viable bacteria in a micro-volume by free-flow electrophoresis. Lab Chip 12(3):451–457CrossRefGoogle Scholar
  79. Ramírez-Castillo FY, Loera-Muro A, Jacques M, Garneau P, Avelar-González FJ, Harel J, Guerrero-Barrera AL (2015) Waterborne pathogens: detection methods and challenges. Pathog 4(2):307–334. doi: 10.3390/pathogens4020307 CrossRefGoogle Scholar
  80. Rauschenbach T, Bernard T, Gnauck A, Jacobi M, Karimanzira D, Krol O, Pfützenreuter T, Scharaw B, Westerhoff T (2016) Modeling, control and optimization of water systems: system engineering methods for control and decision making tasks. Springer, BerlinCrossRefGoogle Scholar
  81. Rodó X, Pascual M, Doblas-Reyes FJ, Gershunov A, Stone DA, Giorgi F, Hudson PJ, Kinter J, Rodríguez-Arias MA, Stenseth NC, Alonso D, García-Serrano J, Dobson AP (2013) Climate change and infectious diseases: can we meet the needs for better prediction? Clim Change 118(3–4):625–640. doi: 10.1007/s10584-013-0744-1 CrossRefGoogle Scholar
  82. Rompré A, Servais P, Baudart J, de-Roubin M-R, Laurent P (2002) Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 49(1):31–54. doi: 10.1016/S0167-7012(01)00351-7 CrossRefGoogle Scholar
  83. Rossman LA (2000) EPANET 2 users manual. United States Environmental Protection Agency, CincinnatiGoogle Scholar
  84. Samendra PS, Masaaki K, Charles PG, Ian LP (2014) Rapid detection technologies for monitoring microorganisms in water. Biosensors J. doi: 10.4172/2090-4967.1000109 Google Scholar
  85. Schönthaler K, von Andrian-Werburg S, Nickel D (2011): Entwicklung eines Indikatorensystems für die Deutsche Anpassungsstrategie an den Klimawandel (DAS). Dessau-Roßlau, Germany: UBA Serie Climate Change 22/11Google Scholar
  86. Seidel M, Niessner R (2008) Analytical microarrays: a critical review. Anal Bioanal Chem 391(5):1521–1544. doi: 10.1007/s00216-008-2039-3 CrossRefGoogle Scholar
  87. Seidel M, Niessner R (2014) Chemiluminescence microarrays in analytical chemistry: a critical review. Anal Bioanal Chem 406(23):5589–5612. doi: 10.1007/s00216-014-7968-4 CrossRefGoogle Scholar
  88. Seidel M, Kunze A, Elsässer D, Otto J, Tiehm A, Heese C, Blättel V, Vosseler S, Dame G, Dilcher M, Hakenberg S, Hügle M, Hufert F, Scharaw B, Westerhoff T, Dietze S, Sedehizade F, Karthe D, Niessner R (2015) Entwicklung eines automatisierten Verfahrens zum Schnellnachweis von hygienerelevanten Bakterien und Viren in Trink- und Rohwasser. In: Wasserchemische Gesellschaft – Fachgruppe in der Gesellschaft deutscher Chemiker e.V. (eds) Wasser 2015: Proceedings zur Jahrestagung der Wasserchemischen Gesellschaft. Wasserchemische Gesellschaft, Mülheim an der Ruhr, pp 125–129Google Scholar
  89. Selinka HC, Botzenhart K, Feuerpfeil I, Puchert W, Schmoll O, Szewzyk R, Willmitzer H (2011) Nachweis von Viren im Rohwasser als Grundlage einer Risikoabschätzung. Bundesgesundheitsblatt - Gesundheitsforschung – Gesundheitsschutz 54(4):496–504CrossRefGoogle Scholar
  90. Szewzyk U, Szewzyk R, Manz W, Schleifer KH (2000) Microbiological safety of drinking water. Annu Rev Microbiol 54:81–127. doi: 10.1146/annurev.micro.54.1.81 CrossRefGoogle Scholar
  91. Tatsugari T, Yoshiki T (2000) Screening for microorganisms with specific characteristics by flow cytometry and single-cell sorting. J Biosci Bioeng 89(3):217–222. doi: 10.1016/S1389-1723(00)88822-2 CrossRefGoogle Scholar
  92. Vulto P, Dame G, Maier U, Makohliso S, Podszun S, Zahn P, Urban G (2010) A microfluidic approach for high efficiency extraction of low molecular weight RNA. Lab Chip 10(5):610–616. doi: 10.1039/b913481f CrossRefGoogle Scholar
  93. Watkins J, Cameron SA (1991) Recently recognized concerns in drinking water microbiology. Water Environ J 5(6):624–630CrossRefGoogle Scholar
  94. Wolter A, Niessner R, Seidel M (2008) Detection of Escherichia coli O157:H7, Salmonella typhimurium, and Legionella pneumophila in water using a flow-through chemiluminescence microarray readout system. Anal Chem 80(15):5854–5863. doi: 10.1021/ac800318b CrossRefGoogle Scholar
  95. Wu J, Long SC, Das D, Dorner SM (2011) Are microbial indicators and pathogens correlated? A statistical analysis of 40 years of research. J Water Health 9(2):265–278. doi: 10.2166/wh.2011.117 CrossRefGoogle Scholar
  96. Wunderlich A, Torggler C, Elsaesser D, Lück C, Niessner R, Seidel M (2016) Rapid quantification method for Legionella pneumophila in surface water. Anal Bioanal Chem 408(9):2203–2213. doi: 10.1007/s00216-016-9362-x CrossRefGoogle Scholar
  97. Young G, Turner S, Davies JK, Sundqvist G, Figdor D (2007) Bacterial DNA persists for extended periods after cell death. J Endod 33(12):1417–1420. doi: 10.1016/j.joen.2007.09.002 CrossRefGoogle Scholar
  98. Zhang Y, Ozdemir P (2009) Microfluidic DNA amplification—a review. Anal Chim Acta 638(2):115–125. doi: 10.1016/j.aca.2009.02.038 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daniel Karthe
    • 1
    • 2
    Email author
  • Ole Behrmann
    • 3
  • Verena Blättel
    • 4
  • Dennis Elsässer
    • 5
  • Christian Heese
    • 6
  • Matthias Hügle
    • 3
  • Frank Hufert
    • 7
  • Andreas Kunze
    • 5
  • Reinhard Niessner
    • 5
  • Johannes Ho
    • 8
  • Buren Scharaw
    • 9
  • Matthias Spoo
    • 3
  • Andreas Tiehm
    • 8
  • Gerald Urban
    • 3
  • Silvia Vosseler
    • 4
  • Thomas Westerhoff
    • 9
  • Gregory Dame
    • 3
    • 7
    Email author
  • Michael Seidel
    • 5
    Email author
  1. 1.Department Aquatic Ecosystem AnalysisHelmholtz Center for Environmental ResearchMagdeburgGermany
  2. 2.Department of GeographyGeorg-August UniversityGöttingenGermany
  3. 3.Department of Microsystems Engineering - IMTEKUniversity of FreiburgFreiburgGermany
  4. 4.R-Biopharm AGDarmstadtGermany
  5. 5.Institute of Hydrochemistry and Chemical BalneologyTechnical University MunichMunichGermany
  6. 6.GWK Präzisionstechnik GmbHMunichGermany
  7. 7.Institute of Microbiology and VirologyBrandenburg Medical School Theodor FontaneNeuruppinGermany
  8. 8.DVGW Technologiezentrum Wassser (TZW)KarlsruheGermany
  9. 9.Fraunhofer IOSB Application Center for Systems TechnologyIlmenauGermany

Personalised recommendations