Environmental Earth Sciences

, 75:1476 | Cite as

Qanat is not a hazard

Rebuttal to “Qanat hazard in Iranian urban areas: explanation and remedies” by Abbasnejad A, Abbasnejad B, Derakhshani R, Hemmati Sarapardeh A (Environ Earth Sci 2016; 75: 1306)
  • Mario PariseEmail author


Comments are presented on the article by Abbasnejad et al. (Environ Earth Sci 75:1306, 2016) dealing with qanat and hazards in Iran. My rebuttal starts from the direct attribution of the described hazards to qanat and addresses the importance in the correct use of terminology for geological hazards. All of the problems pointed out in Iran (subsidence, sinkholes, pollution) have, to me, an anthropogenic origin and cannot be directly ascribed to qanat. Eventually, I present some additional elements to highlight the remarkable importance of qanat systems and their influence on the development of similar underground structures in many countries of the Mediterranean Basin. This remarks the relevance of qanat as cultural heritage sites and the need for their preservation and valorization.


Hazard Terminology Water resources Qanat Underground aqueducts 


  1. Abbasnejad A, Abbasnejad B, Derakhshani R, Hemmati Sarapardeh A (2016) Qanat hazard in Iranian urban areas: explanation and remedies. Environ Earth Sci 75:1306CrossRefGoogle Scholar
  2. Aley T (2000) Water and land-use problems in areas of conduit aquifers. In: Klimchouk AB, Ford DC, Palmer AN, Dreybrodt W (eds) Speleogenesis. Evolution of karst aquifers. National Speleological Society, Huntsville, pp 481–484Google Scholar
  3. Al-Taiee TM (2012) Kahrezes (Qanats)… A ground water harvesting technology in arid and semi arid regions. In: Proceedings of 3rd IWA Spec Conf on “Water and Wastewater Technologies in Ancient Civilizations”, Istanbul, 22–24 March 2012, pp 14–22Google Scholar
  4. Ashby T (1935) The aqueducts of ancient Rome. Clarendon Press, Oxford, p 132Google Scholar
  5. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160CrossRefGoogle Scholar
  6. Bates RL, Jackson JA (1987) Glossary of geology: American geological institute. Alexandria, VirginiaGoogle Scholar
  7. Bixio R, Parise M, Saj S, Traverso M (2007) L’acquedotto sotterraneo di Gravina in Puglia “Sant’Angelo: Fontane della Stella”. Opera Ipogea 1–2:105–112Google Scholar
  8. Bobée C (2002) Essai d’interpretation du fonctionnement des aqueducs romains de Nimes et de Frejus. Memoire de DEA Environnement et archeologie, pp 41Google Scholar
  9. Brinkmann R, Parise M (2012) Karst environments: problems, management, human impacts, and sustainability. An introduction to the special issue. J Cave Karst Stud 74(2):135–136CrossRefGoogle Scholar
  10. Castellani V, Dragoni W (1991) Italian tunnels in antiquity. Tunn Tunn 23(3):55–57Google Scholar
  11. Castellani V, Caloi V, Dobosz T, Galeazzi C, Galeazzi S, Germani C (2003) L’emissario del Lago di Nemi. Indagine topografico-strutturale. Opera Ipogea 2(3):2–76Google Scholar
  12. Coch NK (1995) Geohazards: natural and human. Prentice Hall, New JerseyGoogle Scholar
  13. Del Prete S, Parise M (2013) An overview of the geological and morphological constraints in the excavation of artificial cavities. In: Filippi M, Bosak P (eds) Proceedings of 16th Int Congr Speleology, Brno, 21–28 July 2013, vol 2, pp 236–241Google Scholar
  14. Djalante R (2012) Adaptive governance and resilience: the role of multi-stakeholder platforms in disaster risk reduction. Nat Hazards Earth Syst Sci 12:2923–2942CrossRefGoogle Scholar
  15. English PW (1968) The origin and spread of qanats in the Old World. Proc Am Philos Soc 112(3):170–181Google Scholar
  16. Eslamian S, Okhravi SS, Faziolahi H, Eslamian F (2012) Sustainable management of water resources with techniques of rainwater harvesting in ancient and present. In: Proceedings of 3rd IWA Spec Conf on “Water and Wastewater Technologies in Ancient Civilizations”, Istanbul, 22–24 March 2012, pp 252–258Google Scholar
  17. ESTEPA (2008) Las galerias drenantes en Espana. Analisis y seleccion de qanat(s). Ministerio de Medio Ambiente, y Medio Rural y Marino. ISBN 978-84-8320-453-5Google Scholar
  18. Ford D, Williams PW (2007) Karst hydrogeology and geomorphology. Wiley, HobokenCrossRefGoogle Scholar
  19. Frumkin A (1999) Interaction between karst, water and agriculture over the climatic gradient of Israel. Int J Speleol 26B(1/4):99–110CrossRefGoogle Scholar
  20. Galeazzi C, Germani C, Parise M (2012) Gli antichi emissari artificiali dei bacini endoreici. Opera Ipogea 1:3–10Google Scholar
  21. Gutiérrez F, Parise M, De Waele J, Jourde H (2014) A review on natural and human-induced geohazards and impacts in karst. Earth Sci Rev 138:61–88CrossRefGoogle Scholar
  22. Judson S, Kahane A (1963) Underground drainageways in southern Etruria and northern Latium. Pap Br Sch Rome 31:74–99CrossRefGoogle Scholar
  23. Kleina RJT, Nicholls RJ, Thomalla F (2003) Resilience to natural hazards: how useful is this concept? Environ Hazards 5:35–45CrossRefGoogle Scholar
  24. Koloski Ostrow AO (ed) (2001) Water use and hydraulics in the Roman city. Archaeological Institute of America, Colloquia and Conf. Papers no. 3, Kendall/Hunt Publ. Co. pp 131Google Scholar
  25. Laureano P (2001) Water atlas. Traditional knowledge to combat desertification. Bollati Boringhieri, TorinoGoogle Scholar
  26. Laureano P (2009) Ancient water management techniques to contrast drought and desertification in the Mediterranean. In: Proceedings of IWA 2nd Int Symp “Water and Wastewater Technologies in Ancient Civilizations”, May 28–30, 2009, BariGoogle Scholar
  27. Lei Y, Wang J, Yue Y, Zhou H, Yin W (2014) Rethinking the relationships of vulnerability, resilience, and adaptation from a disaster risk perspective. Nat Hazards 70:609–627CrossRefGoogle Scholar
  28. Leucci G, Parise M, Sammarco M, Scardozzi G (2016) The use of geophysical prospections to map ancient hydraulic works: the Triglio underground aqueduct (Apulia, Southern Italy). Archaeol Prospect 23:195–211CrossRefGoogle Scholar
  29. Lightfoot DR (1996) Syrian qanat Romani: history, ecology, abandonment. J Arid Environ 33:321–336CrossRefGoogle Scholar
  30. Mays LW, Koutsoyiannis D, Angelakis AN (2007) A brief history of urban water supply in the antiquity. Water Sci Technol Water Supply 7(1):1–12CrossRefGoogle Scholar
  31. Parise M (2012) A present risk from past activities: sinkhole occurrence above underground quarries. Carbonates Evaporites 27(2):109–118CrossRefGoogle Scholar
  32. Parise M (2013) Recognition of instability features in artificial cavities. In: Filippi M, Bosak P (eds) Proceedings of 16th Int Congr Speleology, Brno, 21–28 July 2013, vol 2, pp 224–229Google Scholar
  33. Parise M (2015) A procedure for evaluating the susceptibility to natural and anthropogenic sinkholes. Georisk 9(4):272–285. doi: 10.1080/17499518.2015.1045002 Google Scholar
  34. Parise M, Gunn J (eds) (2007) Natural and anthropogenic hazards in karst areas: recognition, analysis and mitigation. Geol Soc, London, sp publ 279Google Scholar
  35. Parise M, Sammarco M (2015) The historical use of water resources in karst. Environ Earth Sci 74:143–152. doi: 10.1007/s12665-014-3685-8 CrossRefGoogle Scholar
  36. Parise M, Galeazzi C, Bixio R, Dixon M (2013) Classification of artificial cavities: a first contribution by the UIS Commission. In: Filippi M, Bosak P (eds) Proceedings of 16th Int Congr Speleology, vol 2, pp 230–235Google Scholar
  37. Parise M, Closson D, Gutierrez F, Stevanovic Z (2014) Facing engineering problems in the fragile karst environment. In: Lollino G, Manconi A, Guzzetti F, Culshaw M, Bobrowsky P, Luino F (eds), Engineering geology for society and territory. Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation. Springer, pp 479–482. ISBN 978-3-319-09047-4Google Scholar
  38. Parise M, Galeazzi C, Germani C, Bixio R, Del Prete S, Sammarco M (2015) The map of ancient underground aqueducts in Italy: updating of the project, and future perspectives. In: Proceedings of the International Congress in Artificial Cavities “Hypogea 2015”, Rome, March 11–17, 2015, pp 235–243. ISBN 978-88-89731-79-6Google Scholar
  39. Stevanovic Z (2013) Global trend and negative synergy: climate changes and groundwater over-extraction. In: Proceedings of Int Conf ‘‘Climate change impact on water resources’’, 17–18 Oct. 2013, Institute of Wat. Manag. J.Cerni & WSDAC, Belgrade, pp 42–45Google Scholar
  40. Taheri K, Taheri M, Parise M (2016) Impact of intensive groundwater exploitation on an unprotected covered karst aquifer: a case study in Kermanshah Province, western Iran. Environ Earth Sci 75:1221. doi: 10.1007/s12665-016-5995-5 CrossRefGoogle Scholar
  41. Tassios TP (2007) Water supply of ancient Greek cities. Water Sci Technol Water Supply 7(1):165–172CrossRefGoogle Scholar
  42. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. UNESCO, Paris, p 63Google Scholar
  43. Volant Ph, Levret A, Carbon D, Scotti O, Combescure D, Verdel T, Piant A, Laurent Ph (2009) An archeo-seismological study of the Nimes Roman aqueduct, France: indirect evidence for an M6 seismic event? Nat Hazards 49:53–77CrossRefGoogle Scholar
  44. Voudouris KS, Christodoulakos Y, Steiakakis E, Angelakis AN (2013) Hydrogeological characteristics of Hellenic aqueducts-like Qanats. Water 5:1326–1345CrossRefGoogle Scholar
  45. Waltham T, Bell F, Culshaw M (2005) Sinkholes and subsidence. Springer, ChichesterGoogle Scholar
  46. White WB (1988) Geomorphology and hydrology of karst terrains. Oxford Univ. Press, OxfordGoogle Scholar
  47. Wulff HE (1968) The aqueducts of Iran. Sci Am 218:94–105CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National Research Council of ItalyInstitute of Research for the Geo-Hydrological ProtectionBariItaly

Personalised recommendations