Skip to main content

Advertisement

Log in

Geochemical mobility of arsenic in the surficial waters from Argentina

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The presence of arsenic (As) in surface water constitutes an important environmental risk, where mobility and adsorption processes are responsible for its behavior in the sediment–water interface. Therefore, the assessment of adsorption, mobility and water availability of arsenic in freshwater sediments, with agricultural, livestock and urban soil uses was performed. Arsenic concentrations in sediments ranged from 5.4 to 15.9 mg kg−1 (total) and 2.8 to 6.5 mg kg−1 (labile), and those of iron and manganese were 11,563–23,500 and 140.6–662.1 mg kg−1, respectively. The As levels in water were significantly lower than those of sediments. Results would suggest that As co-precipitation and adsorption on Fe oxides are probably the major route of immobilization, determining its low lability. Manganese did not present an outstanding contribution to the retention, and cation-exchange capacity, pH and organic matter of sediments did not show an influence on the mobility of As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arai Y, Sparks DL (2001) ATR-FTIR spectroscopic investigation of phosphate adsorption mechanisms at the ferrihydrite–water interface. J Colloid Interfaces Sci 241:317–326

    Article  Google Scholar 

  • Benson NQ, Anake WU, Etesin UM (2014) Trace metals levels in inorganic fertilizers commercially available in Nigeria. JSRR 3:610–620

    Article  Google Scholar 

  • Bodewig FG, Valenta P, Nürnberg HW (1982) Trace determination of As (III) and As (V) in natural waters by differential pulse anodic stripping voltammetry. Fresen Z Anal Chem 311:187–191

    Article  Google Scholar 

  • Borgnino L, De Pauli CP, Depetris PJ (2012) Arsenate adsorption at the sediment–water interface: sorption experiments and modelling. Environ Earth Sci 65(2):441–451

    Article  Google Scholar 

  • Bundschuh J, Farias B, Martin R, Storniolo A, Bhattacharya P, Cortes J, Bonorino G, Albouy R (2004) Groundwater arsenic in the Chaco-Pampean Plain, Argentina: case study from Robles county, Santiago del Estero Province. Appl Geochem 19:231–243

    Article  Google Scholar 

  • CAA (Código Alimentario Argentino) (2007) Capítulo XII. Bebidas hídricas, agua y agua gasificada. In: http://www.anmat.gov.ar/alimentos/codigoa/Capitulo_XII.pdf. Accessed: 29 de septiembre de 2016

  • Carrasquero A, Adams M (2011) Estudio del complejo amarillo vanadomolibdofosfórico para el análisis de fósforo en suelos. Venesuelos 3:83–88

    Google Scholar 

  • Casiot C, Ujevic M, Munoz M, Seidel JL, Elbaz-Poulichet F (2007) Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Appl Geochem 22(4):788–798

    Article  Google Scholar 

  • Chapagain SK, Shrestha S, Du Laing G, Verloo M, Kazama F (2009) Spatial distribution of arsenic in the intertidal sediments of River Scheldt, Belgium. Environ Int 35(3):461–465

    Article  Google Scholar 

  • Chen M, Ma LQ, Harris WG (2002) Arsenic concentrations in Florida surface soils: influence of soil type and properties. Soil Sci Soc Am J 66:632–640

    Article  Google Scholar 

  • Cohen C (2014) Línea de base Ambiental de la Cuenca de los Arroyos El Durazno y La Totora. Partido de General Alvarado, Provincia de Buenos Aires. Tesis de Licenciatura en Geografía. Universidad Nacional de Mar del Plata, pp 102

  • Cordos EA, Frentiua T, Pontaa M, Marginean L, Abrahamb B, Roman C (2006) Distribution study of inorganic arsenic (III) and (V) species in soil and their mobility in the area of Baia-Mare, Romania. Chem Spec Bioavailab 18(1):11–25

    Article  Google Scholar 

  • De Mello JWV, Roy WR, Talbott JL, Stucki JW (2006) Mineralogy and arsenic mobility in arsenic-rich brazilian soils and sediments. J Soils Sedim 6(1):9–19

  • FAO/SIDA (1983) Manual of methods in aquatic environmental research, part 9. Analyses of metals and organochlorines in fish. FAO Fisheries/Technical Paper, pp 212

  • Fendorf S, Herbel MJ, Tufano KJ, Kocar BD (2008) Biogeochemical processes controlling the cycling of arsenic in soils and sediments. In: Huang PM, Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, pp 313–338

  • Fields and Parrot (1972) Reaction pH. In: Soil Conservation Service (ed) Soil survey laboratory methods and procedures for collecting soil samples. US, Department of Agriculture, Washington, DC, p 86

  • Heck JE, Andrew AS, Onega T, Rigas JR, Jackson BP, Karagas MR, Duell EJ (2009) Lung cancer in a US population with low to moderate arsenic exposure. Environ Health Perspect 117:1718–1723

    Article  Google Scholar 

  • IRAM-SAGyP 29577-1 (2012) Calidad ambiental. Calidad de suelo. Capacidad de intercambio catiónico y cationes básicos intercambiables. Parte: Determinación en suelos ligeramente ácidos a neutros y no calcáreo. In: http://aplicaciones.iram.org.ar/. Accessed: 29 de septiembre de 2015

  • Kruse E (1986) Aspectos geohidrológicos de la región sudoriental de Tandilla. Cuencas de los Aos. Vivoratá, las Brusquitas y el Durazno. Asociación Geológica Argentina, Revista 41:367–374

    Google Scholar 

  • Kruse E, Varela L, Laurencena P, Deluchi M, Rojo A, Carol E (2004) Modificaciones del Ciclo Hidrológico en un Área del Noreste de la Provincia de Buenos Aires. Argentina. Serie Hidrogeología y aguas subterráneas 11:131–139. Instituto Geológico Minero de España. ISBN 84-7840-539-9. Madrid

  • Li Z, Hong H, Jean JS, Koski AJ, Liu CC, Reza S, Randolph JJ, Kurdas SR, Friend JH, Antinucci SJ (2011) Characterization on arsenic sorption and mobility of the sediments of Chia-Nan Plain, where Blackfoot disease occurred. Environ Earth Sci 64(3):823–831

    Article  Google Scholar 

  • Luoma SN (1990) Processes affecting metal concentrations in estuarine and coastal marine sediments. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press Inc, Boca Raton, pp 51–66

    Google Scholar 

  • Ma J, Guo H, Lei M, Zhou X, Li F, Yu T, Wei R, Zhang H, Zhang X, Wu Y (2015) Arsenic adsorption and its fractions on aquifer sediment: effect of pH, arsenic species, and iron/manganese minerals. Water Air Soil Pollut 226(8):1–15

    Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  Google Scholar 

  • Martín AV, García MC (2009) Contaminación química de aguas para consumo en la periferia urbana de la localidad de Miramar, Provincia de Buenos Aires, Argentina. Nadir: Revista electrónica de geografía austral. Año 1:12–30

    Google Scholar 

  • Martínez D, Osterrieth M (2013) Hydrogeochemistry and pollution effects of an aquifer in Quaternary loess like sediments in the landfilling area of Mar del Plata, Argentina. Revista Facultad Ingeniería, Universidad de Antioquia 66:9–23

    Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53

    Article  Google Scholar 

  • Morrás HJ (1995) Mineralogy and cation exchange capacity of the fine silt fraction in two soils from the southern Chaco Region (Argentina). Geoderma 64:281–295

    Article  Google Scholar 

  • Müller K, Daus B, Morgenstern P, Wennrich R (2007) Mobilization of antimony and arsenic in soil and sediment samples—evaluation of different leaching procedures. Water Air Soil Pollut 183(1–4):427–436

    Article  Google Scholar 

  • Nicolli HB, Bundschuh J, Blanco MC, Tujchneider OF, Panarello HO, Dapeña C, Rusansky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56

    Article  Google Scholar 

  • Paoloni JD, Sequeira ME, Espósito ME, Fiorentino CE, Blanco MDC (2009) Arsenic in water resources of the Southern Pampa Plains, Argentina. J Environ Public Health 2009:1–7

    Article  Google Scholar 

  • Parfitt RL, Atkinson RJ, Smart RSC (1975) Mechanism of phosphate fixation by iron oxides. Soil Sci Soc Am J 39:837–841

    Article  Google Scholar 

  • Pérez Carrera A, Fernández Cirelli A (2005) Arsenic concentration in water and bovine milk in Cordoba, Argentina. Preliminary results. J Dairy Res 72:122–124

    Article  Google Scholar 

  • Puccia V, Limbozzi F, Avena M (2015) Arsenic in porewaters of the unsaturated zone of an Argentinean watershed: adsorption and competition with carbonate as important processes that regulate its concentration. Aquat Geochem 21:513–534

    Article  Google Scholar 

  • Puntoriero M, Volpedo AV, Fernández Cirelli A (2014) Arsenic, Fluoride, and Vanadium in surfacewater (Chasicó Lake, Argentina). Front Environ Sci 2:1–5

    Article  Google Scholar 

  • Puntoriero ML, Fernandez Cirelli A, Volpedo AV (2015) Geochemical mechanisms controlling the chemical composition of groundwater and surface water in the southwest of the Pampean plain (Argentina). J Geochem Explor 150:64–72

    Article  Google Scholar 

  • Quiroz Londoño OM, Martinez DE, Massone HE (2012) Evaluación Comparativa de Métodos de Cálculo de Recarga en Ambientes de Llanura. La Llanura Interserrana Bonaerense (Argentina), como caso de estudio. Comparative Assessment of Recharge Estimation. Dyna 79:15–25

    Google Scholar 

  • Romanelli A, Quiroz Londoño OM, Massone HE, Martínez DE, Bocanegra E (2011) El agua subterránea en el funcionamiento hidrológico de los humedales del Sudeste Bonaerense, Provincia de Buenos Aires, Argentina. Boletín Geológico y Minero 121:373–386

    Google Scholar 

  • Root RA, Dixit S, Campbell KM, Jew AD, Hering JG, O’Day PA (2007) Arsenic sequestration by sorption processes in high-iron sediments. Geochimica Cosmo Acta 71(23):5782–5803

    Article  Google Scholar 

  • Rosso JJ, Puntoriero ML, Troncoso JJ, Volpedo AV, Fernández Cirelli A (2011) Occurrence of fluoride in arsenic-rich surface waters: a case study in the Pampa Plain, Argentina. Bull Environ Contam Toxicol 87:409–413

    Article  Google Scholar 

  • Rosso JJ, Schenone NF, Carrera AP, Cirelli AF (2013) Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers. Environ Geochem Health 35:201–214

    Article  Google Scholar 

  • Sarkar SK, Favas PJC, Rakshit D, Satpathy KK (2014) Geochemical speciation and risk assessment of heavy metals in soils and sediments. In: Environmental risk assessment of soil contamination, chap 25. InTech, pp 723–757

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016

    Article  Google Scholar 

  • Stollenwerk KG (2003) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Welch AH, Stollenwerk KG (eds) Arsenic in Ground Water: Geochemistry and Occurrence. Kluwer Academic Publishers, Boston, pp 67–100

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 3rd edn. Bulletin of Fisheries Research Board of Canada, Ottawa, p 167

    Google Scholar 

  • Tremearne TH, Jacob KD (1941) Arsenic in natural phosphates and phosphate fertilizers. Tech Bull 781:1–41

    Google Scholar 

  • US/EPA (2007) Monitored natural attenuation of inorganic contaminants in groundwater. Assessment for non-radionuclides including arsenic, cadmium, chromium, copper, lead, nickel, nitrate, perchlorate, and selenium, vol 2. EPA/600/R-07/140, p 124

  • Volpedo A, Puntoriero ML, Fernández Cirelli A (2012). Riesgo potencial de las altas concentraciones de arsénico en el Lago Chasicó (Buenos Aires, Argentina). In: VII Congreso de Medio Ambiente (La Plata, 2012)

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  Google Scholar 

  • World Health Organization (WHO) (2006) http://www.who.int. Accessed: 29 de septiembre de 2015

  • Zan F, Huo S, Zhang J, Zhang L, Xi B, Zhang L (2014) Arsenic fractionation and contamination assessment in sediments of thirteen lakes from the East Plain and Yungui Plateau Ecoregions, China. J Environ Sci 26:1977–1984

    Article  Google Scholar 

  • Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall Inc, Englewood Cliffs, p 944

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by grants from National Scientific and Technical Research Council, CONICET (PIP0348/2010) and Mar del Plata University (EXA640/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Daniela Robles.

Additional information

This article is part of a Topical Collection in Environmental Earth Sciences on “3RAGSU'', guest edited by Daniel Emilio Martinez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Robles, A.D., Polizzi, P., Romero, M.B. et al. Geochemical mobility of arsenic in the surficial waters from Argentina. Environ Earth Sci 75, 1479 (2016). https://doi.org/10.1007/s12665-016-6273-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-6273-2

Keywords

Navigation