Environmental Earth Sciences

, 75:1479 | Cite as

Geochemical mobility of arsenic in the surficial waters from Argentina

  • Alicia Daniela RoblesEmail author
  • Paula Polizzi
  • María Belén Romero
  • Leila Natalia Chiodi Boudet
  • Sandra Medici
  • Agustín Costas
  • Marcela Gerpe
Thematic Issue
Part of the following topical collections:
  1. 3RAGSU


The presence of arsenic (As) in surface water constitutes an important environmental risk, where mobility and adsorption processes are responsible for its behavior in the sediment–water interface. Therefore, the assessment of adsorption, mobility and water availability of arsenic in freshwater sediments, with agricultural, livestock and urban soil uses was performed. Arsenic concentrations in sediments ranged from 5.4 to 15.9 mg kg−1 (total) and 2.8 to 6.5 mg kg−1 (labile), and those of iron and manganese were 11,563–23,500 and 140.6–662.1 mg kg−1, respectively. The As levels in water were significantly lower than those of sediments. Results would suggest that As co-precipitation and adsorption on Fe oxides are probably the major route of immobilization, determining its low lability. Manganese did not present an outstanding contribution to the retention, and cation-exchange capacity, pH and organic matter of sediments did not show an influence on the mobility of As.


Arsenic Surface sediment Adsorption Mobility 



This work was partially supported by grants from National Scientific and Technical Research Council, CONICET (PIP0348/2010) and Mar del Plata University (EXA640/13).


  1. Arai Y, Sparks DL (2001) ATR-FTIR spectroscopic investigation of phosphate adsorption mechanisms at the ferrihydrite–water interface. J Colloid Interfaces Sci 241:317–326CrossRefGoogle Scholar
  2. Benson NQ, Anake WU, Etesin UM (2014) Trace metals levels in inorganic fertilizers commercially available in Nigeria. JSRR 3:610–620CrossRefGoogle Scholar
  3. Bodewig FG, Valenta P, Nürnberg HW (1982) Trace determination of As (III) and As (V) in natural waters by differential pulse anodic stripping voltammetry. Fresen Z Anal Chem 311:187–191CrossRefGoogle Scholar
  4. Borgnino L, De Pauli CP, Depetris PJ (2012) Arsenate adsorption at the sediment–water interface: sorption experiments and modelling. Environ Earth Sci 65(2):441–451CrossRefGoogle Scholar
  5. Bundschuh J, Farias B, Martin R, Storniolo A, Bhattacharya P, Cortes J, Bonorino G, Albouy R (2004) Groundwater arsenic in the Chaco-Pampean Plain, Argentina: case study from Robles county, Santiago del Estero Province. Appl Geochem 19:231–243CrossRefGoogle Scholar
  6. CAA (Código Alimentario Argentino) (2007) Capítulo XII. Bebidas hídricas, agua y agua gasificada. In: Accessed: 29 de septiembre de 2016
  7. Carrasquero A, Adams M (2011) Estudio del complejo amarillo vanadomolibdofosfórico para el análisis de fósforo en suelos. Venesuelos 3:83–88Google Scholar
  8. Casiot C, Ujevic M, Munoz M, Seidel JL, Elbaz-Poulichet F (2007) Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Appl Geochem 22(4):788–798CrossRefGoogle Scholar
  9. Chapagain SK, Shrestha S, Du Laing G, Verloo M, Kazama F (2009) Spatial distribution of arsenic in the intertidal sediments of River Scheldt, Belgium. Environ Int 35(3):461–465CrossRefGoogle Scholar
  10. Chen M, Ma LQ, Harris WG (2002) Arsenic concentrations in Florida surface soils: influence of soil type and properties. Soil Sci Soc Am J 66:632–640CrossRefGoogle Scholar
  11. Cohen C (2014) Línea de base Ambiental de la Cuenca de los Arroyos El Durazno y La Totora. Partido de General Alvarado, Provincia de Buenos Aires. Tesis de Licenciatura en Geografía. Universidad Nacional de Mar del Plata, pp 102Google Scholar
  12. Cordos EA, Frentiua T, Pontaa M, Marginean L, Abrahamb B, Roman C (2006) Distribution study of inorganic arsenic (III) and (V) species in soil and their mobility in the area of Baia-Mare, Romania. Chem Spec Bioavailab 18(1):11–25CrossRefGoogle Scholar
  13. De Mello JWV, Roy WR, Talbott JL, Stucki JW (2006) Mineralogy and arsenic mobility in arsenic-rich brazilian soils and sediments. J Soils Sedim 6(1):9–19Google Scholar
  14. FAO/SIDA (1983) Manual of methods in aquatic environmental research, part 9. Analyses of metals and organochlorines in fish. FAO Fisheries/Technical Paper, pp 212Google Scholar
  15. Fendorf S, Herbel MJ, Tufano KJ, Kocar BD (2008) Biogeochemical processes controlling the cycling of arsenic in soils and sediments. In: Huang PM, Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of heavy metals and metalloids in soil environments. Wiley, pp 313–338Google Scholar
  16. Fields and Parrot (1972) Reaction pH. In: Soil Conservation Service (ed) Soil survey laboratory methods and procedures for collecting soil samples. US, Department of Agriculture, Washington, DC, p 86Google Scholar
  17. Heck JE, Andrew AS, Onega T, Rigas JR, Jackson BP, Karagas MR, Duell EJ (2009) Lung cancer in a US population with low to moderate arsenic exposure. Environ Health Perspect 117:1718–1723CrossRefGoogle Scholar
  18. IRAM-SAGyP 29577-1 (2012) Calidad ambiental. Calidad de suelo. Capacidad de intercambio catiónico y cationes básicos intercambiables. Parte: Determinación en suelos ligeramente ácidos a neutros y no calcáreo. In: Accessed: 29 de septiembre de 2015
  19. Kruse E (1986) Aspectos geohidrológicos de la región sudoriental de Tandilla. Cuencas de los Aos. Vivoratá, las Brusquitas y el Durazno. Asociación Geológica Argentina, Revista 41:367–374Google Scholar
  20. Kruse E, Varela L, Laurencena P, Deluchi M, Rojo A, Carol E (2004) Modificaciones del Ciclo Hidrológico en un Área del Noreste de la Provincia de Buenos Aires. Argentina. Serie Hidrogeología y aguas subterráneas 11:131–139. Instituto Geológico Minero de España. ISBN 84-7840-539-9. MadridGoogle Scholar
  21. Li Z, Hong H, Jean JS, Koski AJ, Liu CC, Reza S, Randolph JJ, Kurdas SR, Friend JH, Antinucci SJ (2011) Characterization on arsenic sorption and mobility of the sediments of Chia-Nan Plain, where Blackfoot disease occurred. Environ Earth Sci 64(3):823–831CrossRefGoogle Scholar
  22. Luoma SN (1990) Processes affecting metal concentrations in estuarine and coastal marine sediments. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press Inc, Boca Raton, pp 51–66Google Scholar
  23. Ma J, Guo H, Lei M, Zhou X, Li F, Yu T, Wei R, Zhang H, Zhang X, Wu Y (2015) Arsenic adsorption and its fractions on aquifer sediment: effect of pH, arsenic species, and iron/manganese minerals. Water Air Soil Pollut 226(8):1–15Google Scholar
  24. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefGoogle Scholar
  25. Martín AV, García MC (2009) Contaminación química de aguas para consumo en la periferia urbana de la localidad de Miramar, Provincia de Buenos Aires, Argentina. Nadir: Revista electrónica de geografía austral. Año 1:12–30Google Scholar
  26. Martínez D, Osterrieth M (2013) Hydrogeochemistry and pollution effects of an aquifer in Quaternary loess like sediments in the landfilling area of Mar del Plata, Argentina. Revista Facultad Ingeniería, Universidad de Antioquia 66:9–23Google Scholar
  27. Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53CrossRefGoogle Scholar
  28. Morrás HJ (1995) Mineralogy and cation exchange capacity of the fine silt fraction in two soils from the southern Chaco Region (Argentina). Geoderma 64:281–295CrossRefGoogle Scholar
  29. Müller K, Daus B, Morgenstern P, Wennrich R (2007) Mobilization of antimony and arsenic in soil and sediment samples—evaluation of different leaching procedures. Water Air Soil Pollut 183(1–4):427–436CrossRefGoogle Scholar
  30. Nicolli HB, Bundschuh J, Blanco MC, Tujchneider OF, Panarello HO, Dapeña C, Rusansky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56CrossRefGoogle Scholar
  31. Paoloni JD, Sequeira ME, Espósito ME, Fiorentino CE, Blanco MDC (2009) Arsenic in water resources of the Southern Pampa Plains, Argentina. J Environ Public Health 2009:1–7CrossRefGoogle Scholar
  32. Parfitt RL, Atkinson RJ, Smart RSC (1975) Mechanism of phosphate fixation by iron oxides. Soil Sci Soc Am J 39:837–841CrossRefGoogle Scholar
  33. Pérez Carrera A, Fernández Cirelli A (2005) Arsenic concentration in water and bovine milk in Cordoba, Argentina. Preliminary results. J Dairy Res 72:122–124CrossRefGoogle Scholar
  34. Puccia V, Limbozzi F, Avena M (2015) Arsenic in porewaters of the unsaturated zone of an Argentinean watershed: adsorption and competition with carbonate as important processes that regulate its concentration. Aquat Geochem 21:513–534CrossRefGoogle Scholar
  35. Puntoriero M, Volpedo AV, Fernández Cirelli A (2014) Arsenic, Fluoride, and Vanadium in surfacewater (Chasicó Lake, Argentina). Front Environ Sci 2:1–5CrossRefGoogle Scholar
  36. Puntoriero ML, Fernandez Cirelli A, Volpedo AV (2015) Geochemical mechanisms controlling the chemical composition of groundwater and surface water in the southwest of the Pampean plain (Argentina). J Geochem Explor 150:64–72CrossRefGoogle Scholar
  37. Quiroz Londoño OM, Martinez DE, Massone HE (2012) Evaluación Comparativa de Métodos de Cálculo de Recarga en Ambientes de Llanura. La Llanura Interserrana Bonaerense (Argentina), como caso de estudio. Comparative Assessment of Recharge Estimation. Dyna 79:15–25Google Scholar
  38. Romanelli A, Quiroz Londoño OM, Massone HE, Martínez DE, Bocanegra E (2011) El agua subterránea en el funcionamiento hidrológico de los humedales del Sudeste Bonaerense, Provincia de Buenos Aires, Argentina. Boletín Geológico y Minero 121:373–386Google Scholar
  39. Root RA, Dixit S, Campbell KM, Jew AD, Hering JG, O’Day PA (2007) Arsenic sequestration by sorption processes in high-iron sediments. Geochimica Cosmo Acta 71(23):5782–5803CrossRefGoogle Scholar
  40. Rosso JJ, Puntoriero ML, Troncoso JJ, Volpedo AV, Fernández Cirelli A (2011) Occurrence of fluoride in arsenic-rich surface waters: a case study in the Pampa Plain, Argentina. Bull Environ Contam Toxicol 87:409–413CrossRefGoogle Scholar
  41. Rosso JJ, Schenone NF, Carrera AP, Cirelli AF (2013) Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers. Environ Geochem Health 35:201–214CrossRefGoogle Scholar
  42. Sarkar SK, Favas PJC, Rakshit D, Satpathy KK (2014) Geochemical speciation and risk assessment of heavy metals in soils and sediments. In: Environmental risk assessment of soil contamination, chap 25. InTech, pp 723–757 Google Scholar
  43. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  44. Smedley PL, Kinniburgh DG, Macdonald DMJ, Nicolli HB, Barros AJ, Tullio JO, Pearce JM, Alonso MS (2005) Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Appl Geochem 20:989–1016CrossRefGoogle Scholar
  45. Stollenwerk KG (2003) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Welch AH, Stollenwerk KG (eds) Arsenic in Ground Water: Geochemistry and Occurrence. Kluwer Academic Publishers, Boston, pp 67–100Google Scholar
  46. Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis, 3rd edn. Bulletin of Fisheries Research Board of Canada, Ottawa, p 167Google Scholar
  47. Tremearne TH, Jacob KD (1941) Arsenic in natural phosphates and phosphate fertilizers. Tech Bull 781:1–41Google Scholar
  48. US/EPA (2007) Monitored natural attenuation of inorganic contaminants in groundwater. Assessment for non-radionuclides including arsenic, cadmium, chromium, copper, lead, nickel, nitrate, perchlorate, and selenium, vol 2. EPA/600/R-07/140, p 124Google Scholar
  49. Volpedo A, Puntoriero ML, Fernández Cirelli A (2012). Riesgo potencial de las altas concentraciones de arsénico en el Lago Chasicó (Buenos Aires, Argentina). In: VII Congreso de Medio Ambiente (La Plata, 2012)Google Scholar
  50. Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37CrossRefGoogle Scholar
  51. World Health Organization (WHO) (2006) Accessed: 29 de septiembre de 2015
  52. Zan F, Huo S, Zhang J, Zhang L, Xi B, Zhang L (2014) Arsenic fractionation and contamination assessment in sediments of thirteen lakes from the East Plain and Yungui Plateau Ecoregions, China. J Environ Sci 26:1977–1984CrossRefGoogle Scholar
  53. Zar JH (2010) Biostatistical analysis, 5th edn. Prentice Hall Inc, Englewood Cliffs, p 944Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alicia Daniela Robles
    • 1
    • 2
    Email author
  • Paula Polizzi
    • 1
    • 2
  • María Belén Romero
    • 1
    • 2
  • Leila Natalia Chiodi Boudet
    • 1
    • 2
  • Sandra Medici
    • 3
  • Agustín Costas
    • 3
  • Marcela Gerpe
    • 1
    • 2
  1. 1.Toxicología Ambiental, Departamento de Ciencias Marinas, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar del PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Laboratorio de Análisis Fares TaieMar del PlataArgentina

Personalised recommendations